X-ray crystal structure of voltage-gated proton channel
Structural and functional analysis reveal the resting state of the voltage-gated proton channel Hv1. Comparison with structures of voltage-sensing domains from other systems, captured in the activated state, will aid in understanding the mechanism of voltage sensing. The voltage-gated proton channel...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2014-04, Vol.21 (4), p.352-357 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structural and functional analysis reveal the resting state of the voltage-gated proton channel Hv1. Comparison with structures of voltage-sensing domains from other systems, captured in the activated state, will aid in understanding the mechanism of voltage sensing.
The voltage-gated proton channel Hv1 (or VSOP) has a voltage-sensor domain (VSD) with dual roles of voltage sensing and proton permeation. Its gating is sensitive to pH and Zn
2+
. Here we present a crystal structure of mouse Hv1 in the resting state at 3.45-Å resolution. The structure showed a 'closed umbrella' shape with a long helix consisting of the cytoplasmic coiled coil and the voltage-sensing helix, S4, and featured a wide inner-accessible vestibule. Two out of three arginines in S4 were located below the phenylalanine constituting the gating charge–transfer center. The extracellular region of each protomer coordinated a Zn
2+
, thus suggesting that Zn
2+
stabilizes the resting state of Hv1 by competing for acidic residues that otherwise form salt bridges with voltage-sensing positive charges on S4. These findings provide a platform for understanding the general principles of voltage sensing and proton permeation. |
---|---|
ISSN: | 1545-9993 1545-9985 |
DOI: | 10.1038/nsmb.2783 |