Novel Li sub(3)ClO based glasses with superionic properties for lithium batteries

Three types of next generation batteries are currently being envisaged among the international community: metal-air batteries, multivalent cation batteries and all-solid-state batteries. These battery designs require high-performance, safe and cost effective electrolytes that are compatible with opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-03, Vol.2 (15), p.5470-5480
Hauptverfasser: Braga, M H, Ferreira, JA, Stockhausen, V, Oliveira, JE, El-Azab, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three types of next generation batteries are currently being envisaged among the international community: metal-air batteries, multivalent cation batteries and all-solid-state batteries. These battery designs require high-performance, safe and cost effective electrolytes that are compatible with optimized electrode materials. Solid electrolytes have not yet been extensively employed in commercial batteries as they suffer from poor ionic conduction at acceptable temperatures and insufficient stability with respect to lithium-metal. Here we show a novel type of glasses, which evolve from an antiperovskite structure and that show the highest ionic conductivity ever reported for the Li-ion (25 mS cm super(-1) at 25 degree C). These glassy electrolytes for lithium batteries are inexpensive, light, recyclable, non-flammable and non-toxic. Moreover, they present a wide electrochemical window (higher than 8 V) and thermal stability within the application range of temperatures.
ISSN:2050-7488
2050-7496
DOI:10.1039/c3ta15087a