Effect of Botanical Immunomodulators on Human CYP3A4 Inhibition: Implications for Concurrent Use as Adjuvants in Cancer Therapy

Purpose. Many botanical immunomodulators are used as adjuvants along with cancer chemotherapy. However, information on the impact of concurrent administration of such botanicals on pharmacokinetics of chemotherapy agents is inadequate. This study investigates inhibitory activities of 3 popular botan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative cancer therapies 2014-03, Vol.13 (2), p.167-175
Hauptverfasser: Patil, Dada, Gautam, Manish, Gairola, Sunil, Jadhav, Suresh, Patwardhan, Bhushan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose. Many botanical immunomodulators are used as adjuvants along with cancer chemotherapy. However, information on the impact of concurrent administration of such botanicals on pharmacokinetics of chemotherapy agents is inadequate. This study investigates inhibitory activities of 3 popular botanical adjuvants: Asparagus racemosus (root aqueous extract; ARE), Withania somnifera (root aqueous extract; WSE), and Tinospora cordifolia (stem aqueous extract, TCE) on human CYP3A4 isoenzyme, responsible for metabolism of several chemotherapy agents. Experimental design. Testosterone 6-β hydroxylation was monitored using high-performance liquid chromatography as an indicator of CYP3A4 catalytic activities. Ketoconazole (positive control) and extracts were studied at their in vivo–relevant concentrations. Results. TCE showed mild inhibition while no significant inhibitory activities were observed in WSE and ARE. TCE was further fractionated to obtain polar and nonpolar fractions. The nonpolar fraction showed significant CYP3A4 inhibition with IC50 13.06 ± 1.38 µg/mL. Major constituents of nonpolar fraction were identified using HPLC-DAD-MS profiling as berberine, jatrorrhizine, and palmatine, which showed IC50 values as 6.25 ± 0.30, 15.18 ± 1.59, and 15.53 ± 1.89 µg/mL, respectively. Conclusion. Our findings suggest that constituents of TCE extract especially protoberberine alkaloids have the potential to interact with cancer chemotherapy agents that are metabolized by CYP3A4 in vivo.
ISSN:1534-7354
1552-695X
DOI:10.1177/1534735413503551