Different techniques for the determination of tofisopam

Five simple and sensitive methods were developed for the determination of tofisopam (TF). The first four are stability-indicating depending on the determination of TF in the presence of its degradation product, while the fifth depended on the determination of TF via its degradation product. Method A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of AOAC International 2014-01, Vol.97 (1), p.105-113
Hauptverfasser: Ramadan, Nesrin K, Mohamed, Afaf O, Fouad, Roaida M, Moustafa, Azza A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Five simple and sensitive methods were developed for the determination of tofisopam (TF). The first four are stability-indicating depending on the determination of TF in the presence of its degradation product, while the fifth depended on the determination of TF via its degradation product. Method A was based on first and second derivative spectrophotometry, D and 2D, measuring the amplitude at 298 and 332 nm in the case of 1D and at 312 and 344 nm in the case of 2D. Method B depended on measuring the peak amplitude of the first derivative of the ratio spectra 1DD at 336 nm. Method C was based on difference spectrophotometry by measuring deltaA at 366 nm. Method D was a TLC method using silica gel 60 F254 plates, the optimized mobile phase ethyl acetate-methanol-ammonium hydroxide 10% (8.5 + 1.0 + 0.5, v/v/v), and quantification by densitometric scanning at 315 nm. In method E, spectrofluorometry was applied for the determination of TF via its degradation product; maximum emission was 383 nm when excitation was 295 nm. Linearities were obtained in the concentration range 2-20 microg/mL for methods A, B, and C and 2-20 microg/band and 0.2-1.6 microg/mL for D and E, respectively. In method A, the mean recoveries were 99.45 +/- 0.287 and 100.28 +/- 0.277% at 298 and 332 nm, respectively, in the case of 1D and 99.40 +/- 0.245% and 99.50 +/- 0.292% at 312 and 344 nm, respectively in the case of 2D. The mean recovery was 100.03 +/- 0.523% at 366 nm in method B. Method C showed mean recovery of 100.20 +/- 0.642%. Recoveries for methods D and E were 98.98 +/- 0.721 and 100.25 +/- 0.282%, respectively. The degradation product was obtained in acidic stress condition, separated, and identified by IR and mass spectral analysis, from which the degradation product was confirmed and the degradation pathway was suggested. The first four methods were specific for TF in the presence of different concentrations of its degradation product. The five proposed methods were successfully applied for the determination of TF in Nodeprine tablets. Statistical comparison among the results obtained by these methods and that obtained by the official method for the determination of the drug was made, and no significant differences were found.
ISSN:1060-3271
1944-7922
DOI:10.5740/jaoacint.11-230