Regulation of Acetylation of Histone Deacetylase 2 by p300/CBP-Associated Factor/Histone Deacetylase 5 in the Development of Cardiac Hypertrophy

RATIONALE:Histone deacetylases (HDACs) are closely involved in cardiac reprogramming. Although the functional roles of class I and class IIa HDACs are well established, the significance of interclass crosstalk in the development of cardiac hypertrophy remains unclear. OBJECTIVE:Recently, we suggeste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2014-03, Vol.114 (7), p.1133-1143
Hauptverfasser: Eom, Gwang Hyeon, Nam, Yoon Seok, Oh, Jae Gyun, Choe, Nakwon, Min, Hyun-Ki, Yoo, Eun-Kyung, Kang, Gaeun, Nguyen, Vu Hong, Min, Jung-Joon, Kim, Jong-Keun, Lee, In-Kyu, Bassel-Duby, Rhonda, Olson, Eric N, Park, Woo Jin, Kook, Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RATIONALE:Histone deacetylases (HDACs) are closely involved in cardiac reprogramming. Although the functional roles of class I and class IIa HDACs are well established, the significance of interclass crosstalk in the development of cardiac hypertrophy remains unclear. OBJECTIVE:Recently, we suggested that casein kinase 2α1–dependent phosphorylation of HDAC2 leads to enzymatic activation, which in turn induces cardiac hypertrophy. Here we report an alternative post-translational activation mechanism of HDAC2 that involves acetylation of HDAC2 mediated by p300/CBP-associated factor/HDAC5. METHODS AND RESULTS:Hdac2 was acetylated in response to hypertrophic stresses in both cardiomyocytes and a mouse model. Acetylation was reduced by a histone acetyltransferase inhibitor but was increased by a nonspecific HDAC inhibitor. The enzymatic activity of Hdac2 was positively correlated with its acetylation status. p300/CBP-associated factor bound to Hdac2 and induced acetylation. The HDAC2 K75 residue was responsible for hypertrophic stress–induced acetylation. The acetylation-resistant Hdac2 K75R showed a significant decrease in phosphorylation on S394, which led to the loss of intrinsic activity. Hdac5, one of class IIa HDACs, directly deacetylated Hdac2. Acetylation of Hdac2 was increased in Hdac5-null mice. When an acetylation-mimicking mutant of Hdac2 was infected into cardiomyocytes, the antihypertrophic effect of either nuclear tethering of Hdac5 with leptomycin B or Hdac5 overexpression was reduced. CONCLUSIONS:Taken together, our results suggest a novel mechanism by which the balance of HDAC2 acetylation is regulated by p300/CBP-associated factor and HDAC5 in the development of cardiac hypertrophy.
ISSN:0009-7330
1524-4571
DOI:10.1161/CIRCRESAHA.114.303429