Improved Glycation after Ultrasonic Pretreatment Revealed by High-Performance Liquid Chromatography–Linear Ion Trap/Orbitrap High-Resolution Mass Spectrometry

The glycation extent of bovine serum albumin (BSA) before and after ultrasonication was evaluated by MALDI-TOF and Orbitrap mass spectrometry. Ultrasonic pretreatment significantly improved the incorporation of galactose to BSA. Prior to ultrasonic pretreatment, only 12 sites (11 lysines and 1 argin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2014-03, Vol.62 (12), p.2522-2530
Hauptverfasser: Zhang, Qiuting, Tu, Zongcai, Wang, Hui, Huang, Xiaoqin, Shi, Yan, Sha, Xiaomei, Xiao, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The glycation extent of bovine serum albumin (BSA) before and after ultrasonication was evaluated by MALDI-TOF and Orbitrap mass spectrometry. Ultrasonic pretreatment significantly improved the incorporation of galactose to BSA. Prior to ultrasonic pretreatment, only 12 sites (11 lysines and 1 arginine) were glycated, whereas the number of glycation sites was increased to 42, including 39 lysines and 3 arginines, after treatment. Average degree of substitution per peptide molecule of BSA (DSP) was used to evaluate the glycation level for each glycation site. The ultrasonic pretreatment significantly improved the DSP value of all glycation sites. The prevalently promoted glycation by ultrasonic pretreatment suggests that ultrasonication improves glycation through altering the structure of BSA throughout all three domains. An ultrahigh-resolution linear ion trap Orbitrap mass spectrometer facilitates unambiguous localization of glycation sites, allowing an in-depth analysis of the nature and extent of protein glycation at the molecular level. High-intensity ultrasonication can greatly improve protein glycation and, therefore, opens new routes to modify the functionality of proteins in a positive way.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf5002765