Chemical functionalization of hyaluronic acid for drug delivery applications
Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H1 NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed t...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2014-05, Vol.38, p.177-185 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H1 NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications.
[Display omitted]
•New functionalized hyaluronic acid was prepared by ring opening of maleic anhydride.•Gels with circular pores based on acrylic acid copolymerization were formulated.•In vitro drug loading/release profile was evaluated in simulated ophthalmic media.•The cytotoxicity indicates the potential of derivatives to be used in vivo. |
---|---|
ISSN: | 0928-4931 1873-0191 |
DOI: | 10.1016/j.msec.2014.01.052 |