Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator

In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a progr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2014-04, Vol.6 (4), p.295-302
Hauptverfasser: Weitz, Maximilian, Kim, Jongmin, Kapsner, Korbinian, Winfree, Erik, Franco, Elisa, Simmel, Friedrich C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function. Compartmentalization of complex chemical networks is an essential step towards the creation of cell-scale molecular systems. The encapsulation of a synthetic biochemical oscillating reaction system into cell-sized emulsion droplets is now demonstrated; a large variability in its oscillatory dynamics is observed, which is attributed to partitioning effects.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.1869