Copolymerization of carbon dioxide and butadiene via a lactone intermediate
Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2014-04, Vol.6 (4), p.325-331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2
H
-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.
Radical polymerization of a metastable lactone intermediate — formed from carbon dioxide and butadiene using a palladium catalyst — produces a high-CO
2
-content (29 wt%) polymer. This approach circumvents the thermodynamic and kinetic barriers typically associated with direct copolymerization of carbon dioxide and olefins, and can also be applied to one-pot co- and terpolymerization of carbon dioxide and 1,3-butadienes. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.1882 |