Chemosensory and thermal cue responses in the sub-Antarctic moth Pringleophaga marioni: Do caterpillars choose Wandering Albatross nest proxies?

On the South Indian Ocean Province Islands of the sub-Antarctic, most nutrients are processed through a detritus-based food web. On Marion Island, larvae of the moth Pringleophaga marioni are one of the key decomposers. Abundance of these caterpillars is higher in newly abandoned Wandering Albatross...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polar biology 2014-04, Vol.37 (4), p.555-563
Hauptverfasser: Haupt, Tanya M., Sinclair, Brent J., Chown, Steven L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the South Indian Ocean Province Islands of the sub-Antarctic, most nutrients are processed through a detritus-based food web. On Marion Island, larvae of the moth Pringleophaga marioni are one of the key decomposers. Abundance of these caterpillars is higher in newly abandoned Wandering Albatross ( Diomedea exulans ) nests than other habitats, and this observation has been explained by hypotheses regarding the thermal and nutrient advantages of nests. These hypotheses require a mechanism for increasing the abundance of caterpillars, since nests are an ephemeral resource, and here, we determine whether caterpillars respond to chemosensory and thermal cues using a laboratory choice chamber approach. Caterpillars show no significant preference for newly abandoned nest material over no other choice, old nest material, and the common mire moss Sanionia uncinata . Caterpillars that are acclimated to warm (15 °C) conditions do prefer lower (5 °C) to higher (15 °C) temperatures, perhaps reflecting negative effects of prolonged exposure to warm temperatures on growth. Caterpillars also show significant avoidance of conspecifics, possibly because of incidental cannibalism previously reported in this species. Thus, we find no empirical support for nest-finding ability in caterpillars based on chemosensory or thermal cues. It is possible that adult females or very early instar caterpillars show such ability, or high caterpillar density and biomass in nests are an incidental consequence of better conditions in the nests or deposition by the birds during nest construction.
ISSN:0722-4060
1432-2056
DOI:10.1007/s00300-014-1457-2