Comparison of three-dimensional surface-imaging systems

Summary Background In recent decades, three-dimensional (3D) surface-imaging technologies have gained popularity worldwide, but because most published articles that mention them are technical, clinicians often have difficulties gaining a proper understanding of them. This article aims to provide the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plastic, reconstructive & aesthetic surgery reconstructive & aesthetic surgery, 2014-04, Vol.67 (4), p.489-497
Hauptverfasser: Tzou, Chieh-Han John, Artner, Nicole M, Pona, Igor, Hold, Alina, Placheta, Eva, Kropatsch, Walter G, Frey, Manfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Background In recent decades, three-dimensional (3D) surface-imaging technologies have gained popularity worldwide, but because most published articles that mention them are technical, clinicians often have difficulties gaining a proper understanding of them. This article aims to provide the reader with relevant information on 3D surface-imaging systems. In it, we compare the most recent technologies to reveal their differences. Methods We have accessed five international companies with the latest technologies in 3D surface-imaging systems: 3dMD, Axisthree, Canfield, Crisalix and Dimensional Imaging (Di3D; in alphabetical order). We evaluated their technical equipment, independent validation studies and corporate backgrounds. Results The fastest capturing devices are the 3dMD and Di3D systems, capable of capturing images within 1.5 and 1 ms, respectively. All companies provide software for tissue modifications. Additionally, 3dMD, Canfield and Di3D can fuse computed tomography (CT)/cone-beam computed tomography (CBCT) images into their 3D surface-imaging data. 3dMD and Di3D provide 4D capture systems, which allow capturing the movement of a 3D surface over time. Crisalix greatly differs from the other four systems as it is purely web based and realised via cloud computing. Conclusion 3D surface-imaging systems are becoming important in today's plastic surgical set-ups, taking surgeons to a new level of communication with patients, surgical planning and outcome evaluation. Technologies used in 3D surface-imaging systems and their intended field of application vary within the companies evaluated. Potential users should define their requirements and assignment of 3D surface-imaging systems in their clinical as research environment before making the final decision for purchase.
ISSN:1748-6815
1878-0539
DOI:10.1016/j.bjps.2014.01.003