Unravelling bacteriophage ϕ11 requirements for packaging and transfer of mobile genetic elements in Staphylococcus aureus
Summary Bacteriophages play a major role in spreading mobile genetic elements (MGEs)‐encoded genes among bacterial populations. In spite of this, the molecular requirements for building phage transducing particles have not been completely deciphered. Here, we systematically inactivated each ORF from...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2014-02, Vol.91 (3), p.423-437 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Bacteriophages play a major role in spreading mobile genetic elements (MGEs)‐encoded genes among bacterial populations. In spite of this, the molecular requirements for building phage transducing particles have not been completely deciphered. Here, we systematically inactivated each ORF from the packaging and lysis modules of the staphylococcal phage ϕ11, used as a model for the Siphoviridae phages infecting Gram‐positive bacteria, and determined their functional role in transferring different MGEs including plasmids, staphylococcal pathogenicity islands (SaPIs) and the phage itself. In a previous report, we identified seven of these ORFs as being required for the production of functional phage or SaPI particles. In this report, we have completed the mutational analysis and have identified and characterized 15 additional phage‐encoded proteins required for the production of mature phage, SaPI, or transducing particles. Apart from these, we have not yet ascertained any specific function for the six remaining ϕ11 genes, though they are highly conserved among the staphylococcal bacteriophages. To the best of our knowledge, this study represents the first systematic deletion analysis of all the ORFs comprising the morphogenetic and lysis modules of a phage, clearly defining the molecular requirements involved in phage‐mediated MGEs transfer. |
---|---|
ISSN: | 0950-382X 1365-2958 |
DOI: | 10.1111/mmi.12445 |