Quantitative assessment of mutant allele burden in solid tumors by semiconductor-based next-generation sequencing
Identification of tumor-specific somatic mutations has had a significant impact on both disease diagnosis and therapy selection. The ability of next-generation sequencing (NGS) to provide a quantitative assessment of mutant allele burden, in numerous target genes in a single assay, provides a signif...
Gespeichert in:
Veröffentlicht in: | American journal of clinical pathology 2014-04, Vol.141 (4), p.559-572 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identification of tumor-specific somatic mutations has had a significant impact on both disease diagnosis and therapy selection. The ability of next-generation sequencing (NGS) to provide a quantitative assessment of mutant allele burden, in numerous target genes in a single assay, provides a significant advantage over conventional qualitative genotyping platforms.
We assessed the quantitative capability of NGS and a primer extension-based matrix-assisted laser desorption ionization-time-of-flight (PE-MALDI) assay and directly correlated NGS mutant allele burden determination to morphologic assessment of tumor percentage in H&E-stained slides.
Our results show a 100% concordance between NGS and PE-MALDI in mutant allele detection and a significant correlation between NGS and PE-MALDI for determining mutant allele burden when mutant allele burden is 10% or more.
NGS-based mutation screening provides a quantitative assessment comparable to that of PE-MALDI. In addition, NGS also allows for a high degree of multiplexing and uses nanogram quantities of DNA, thereby preserving precious material for future analysis. Furthermore, this study provides evidence that H&E-based morphologic assessment of tumor burden does not correlate to actual tumor mutant allele burden frequency. |
---|---|
ISSN: | 0002-9173 1943-7722 |
DOI: | 10.1309/ajcp1jugqmw7zntl |