Interaction of novel platelet-increasing agent eltrombopag with rosuvastatin via breast cancer resistance protein in humans

Eltrombopag (ELT), an orally available thrombopoietin receptor agonist, is a substrate of organic anion transporting polypeptide 1B1 (OATP1B1), and coadministration of ELT increases the plasma concentration of rosuvastatin in humans. Since the pharmacokinetic mechanism(s) of the interaction is unkno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug metabolism and disposition 2014-04, Vol.42 (4), p.726-734
Hauptverfasser: Takeuchi, Kazuya, Sugiura, Tomoko, Matsubara, Kazuki, Sato, Ren, Shimizu, Takuya, Masuo, Yusuke, Horikawa, Masato, Nakamichi, Noritaka, Ishiwata, Norihisa, Kato, Yukio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eltrombopag (ELT), an orally available thrombopoietin receptor agonist, is a substrate of organic anion transporting polypeptide 1B1 (OATP1B1), and coadministration of ELT increases the plasma concentration of rosuvastatin in humans. Since the pharmacokinetic mechanism(s) of the interaction is unknown, the present study aimed to clarify the drug interaction potential of ELT at transporters. The OATP1B1-mediated uptake of ELT was inhibited by several therapeutic agents used to treat lifestyle diseases. Among them, rosuvastatin was a potent inhibitor with an IC(50) of 0.05 µM, which corresponds to one-seventh of the calculated maximum unbound rosuvastatin concentration at the inlet to the liver. Nevertheless, a simulation study using a physiologically based pharmacokinetic model predicted that the effect of rosuvastatin on the pharmacokinetic profile of ELT in vivo would be minimal. On the other hand, ELT potently inhibited uptake of rosuvastatin by OATP1B1 and human hepatocytes, with an IC(50) of 0.1 µM. However, the results of the simulation study indicated that inhibition of OATP1B1 by ELT can only partially explain the clinically observed interaction with rosuvastatin. ELT also inhibited transcellular transport of rosuvastatin in MDCKII cells stably expressing breast cancer resistance protein (BCRP), and was found to be a substrate of BCRP. The interaction of ELT with rosuvastatin can be almost quantitatively explained on the assumption that intestinal secretion of rosuvastatin is essentially completely inhibited by ELT. These results suggest that BCRP in small intestine may be the major target for interaction between ELT and rosuvastatin in humans.
ISSN:0090-9556
1521-009X
DOI:10.1124/dmd.113.054767