A convexity theorem for three tangled Hamiltonian torus actions, and super-integrable systems
A completely integrable system on a symplectic manifold is called super-integrable when the number of independent integrals of motion is more than half the dimension of the manifold. Several important completely integrable systems are super-integrable: the harmonic oscillators, the Kepler system, th...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2013-10, Vol.31 (5), p.577-593 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A completely integrable system on a symplectic manifold is called super-integrable when the number of independent integrals of motion is more than half the dimension of the manifold. Several important completely integrable systems are super-integrable: the harmonic oscillators, the Kepler system, the non-periodic Toda lattice, etc. Motivated by an additional property of the super-integrable system of the Toda lattice (Agrotis et al., 2006) [2], we will give a generalization of the Atiyah and Guillemin–Sternbergʼs convexity theorem. |
---|---|
ISSN: | 0926-2245 1872-6984 |
DOI: | 10.1016/j.difgeo.2013.05.009 |