A convexity theorem for three tangled Hamiltonian torus actions, and super-integrable systems

A completely integrable system on a symplectic manifold is called super-integrable when the number of independent integrals of motion is more than half the dimension of the manifold. Several important completely integrable systems are super-integrable: the harmonic oscillators, the Kepler system, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2013-10, Vol.31 (5), p.577-593
1. Verfasser: Abe, Hiraku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A completely integrable system on a symplectic manifold is called super-integrable when the number of independent integrals of motion is more than half the dimension of the manifold. Several important completely integrable systems are super-integrable: the harmonic oscillators, the Kepler system, the non-periodic Toda lattice, etc. Motivated by an additional property of the super-integrable system of the Toda lattice (Agrotis et al., 2006) [2], we will give a generalization of the Atiyah and Guillemin–Sternbergʼs convexity theorem.
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2013.05.009