Structure and catalytic properties of Ni/MWCNTs and Ni/AC catalysts for hydrogen production via ammonia decomposition

The structure and catalytic properties of nickel catalysts supported on multi-wall carbon nanotubes (MWCNTs) and on three different types of activated carbon (AC) were studied. The surface areas of AC carriers were defining the size of supported nickel particles. Large surface area of AC led to smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2014-01, Vol.39 (1), p.277-287
Hauptverfasser: HUI ZHANG, YAHIA ABOBAKOR ALHAMED, KOJIMA, Yoshitsugu, AL-ZAHRANI, Abdulrahim Ahmed, MIYAOKA, Hiroki, PETROV, Lachezar Angelov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure and catalytic properties of nickel catalysts supported on multi-wall carbon nanotubes (MWCNTs) and on three different types of activated carbon (AC) were studied. The surface areas of AC carriers were defining the size of supported nickel particles. Large surface area of AC led to small Ni nanoparticles and high Ni dispersion. Turnover frequency (TOFNH3) of ammonia decomposition decreased with decreasing of Ni particle size. The highest degree of ammonia conversion was observed on Ni/AC prepared by using of AC support with largest surface area. The catalytic activity of Ni/MWCNTs was much higher than catalytic activity of the studied Ni/AC catalysts. The synergic nickel-support interaction and special electronic conductivity properties of MWCNTs were responsible for high catalytic activity of Ni/MWCNTs catalyst.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2013.10.004