Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes

Thin organic films containing carbon nanotubes (CNTs) have received increasing attention in many fields. In this study, a robust thin superhydrophobic film has been created by using layer-by-layer assembly of the carbon nanotubes wrapped by poly(dopamine) (CNT@PDA) and poly(ethyleneimine) (PEI). UV-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-02, Vol.16 (7), p.2936-2943
Hauptverfasser: Wang, Jin-lei, Ren, Ke-feng, Chang, Hao, Zhang, Shi-miao, Jin, Lie-jiang, Ji, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thin organic films containing carbon nanotubes (CNTs) have received increasing attention in many fields. In this study, a robust thin superhydrophobic film has been created by using layer-by-layer assembly of the carbon nanotubes wrapped by poly(dopamine) (CNT@PDA) and poly(ethyleneimine) (PEI). UV-vis spectroscopy, ellipsometry, and quartz crystal microbalance with dissipation (QCM-D) measurements confirmed that the sequential deposition of PEI and CNT@PDA resulted in a linear growth of the (PEI-CNT@PDA) film. This thin film contained as much as 77 wt% CNTs. Moreover, a very stable and flexible free-standing (PEI-CNT@PDA) film could be obtained by employing cellulose acetate (CA) as a sacrificial layer. The film could even withstand ultrasonication in saturated SDS aqueous solution for 30 min. SEM observations indicated that the ultrathin film consisted of nanoscale interpenetrating networks of entangled CNTs and exhibited a very rough surface morphology. The (PEI-CNT@PDA) film turned superhydrophobic after being coated with a low-surface-energy compound. The superhydrophobic films showed excellent resistance against the adhesion of both platelets and Escherichia coli (E. coli). The (PEI-CNT@PDA) films and the proposed methodology may find applications in the area of medical devices to reduce device-associated thrombosis and infection.
ISSN:1463-9076
1463-9084
DOI:10.1039/c3cp54354d