Enhanced photoluminescence properties of methylene blue dye encapsulated in nanosized hydroxyapatite/silica particles with core-shell structure
Organic dye of methylene blue (MB) was encapsulated in core-shell structured hydroxyapatite/silica particles (HAp/silica-MB) through a modified Stöber method with the addition of polyvinylpyrrolidone molecules. It was found that MB molecules were released from HAp/silica-MB at a slower rate than tho...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2013-11, Vol.113 (3), p.583-589 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic dye of methylene blue (MB) was encapsulated in core-shell structured hydroxyapatite/silica particles (HAp/silica-MB) through a modified Stöber method with the addition of polyvinylpyrrolidone molecules. It was found that MB molecules were released from HAp/silica-MB at a slower rate than those from silica-MB in deionized water. In phosphate buffered saline (pH: 7.2–7.4) and acidic solutions (pH: 1.5–1.6), the penetration of ions in the interface influenced the interaction between HAp and MB molecules, which resulted in the rapid release of MB molecules from HAp/silica-MB. From the UV–Vis absorbance spectra, one could see that MB molecules in HAp/silica-MB were weakly aggregated in comparison with those in silica-MB. For HAp/silica-MB, enhanced luminescence properties were observed in the photoluminescence spectra and dual luminescence with two emission peaks were caused by the presence of monomers and dimers. Contrarily, no photoluminescence emission was detected for samples of free MB and silica-MB under the same excitation condition because of the self-quenching effect. It was the adsorption of MB molecules on HAp that had resulted in the enlargement of intramolecular distance and the reduction of self-quenching effect. These hybrid particles with enhanced luminescent properties might find wide applications in the field of bioanalysis, bioseparation, and biomedical imaging. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-013-7630-6 |