Numerical Simulation of Downstream Kinetics of an Atmospheric Pressure Nitrogen Plasma Jet Using Laminar, Modified Laminar, and Turbulent Models

We present numerical simulation of the nitrogen atmospheric pressure plasma jet (APPJ) using three fluid models—namely, laminar model, modified laminar model, and turbulent ( k - ε ) model—coupled with gas-phase reaction kinetics. The spatial profiles of the light emission intensities, gas temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma chemistry and plasma processing 2013-12, Vol.33 (6), p.1121-1135
Hauptverfasser: Tsai, Jheng-Han, Hsu, Chun-Ming, Hsu, Cheng-Che
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present numerical simulation of the nitrogen atmospheric pressure plasma jet (APPJ) using three fluid models—namely, laminar model, modified laminar model, and turbulent ( k - ε ) model—coupled with gas-phase reaction kinetics. The spatial profiles of the light emission intensities, gas temperature, and NO density predicted by the turbulent model show a better agreement with the experimental observations, compared with laminar and modified laminar models. We have demonstrated that the turbulent model shows more oxygen entrainment, more mixing with the ambient air, and a lower axial velocity at the downstream. These allow the turbulent model to more precisely capture the APPJ characteristics than the laminar and modified laminar models do.
ISSN:0272-4324
1572-8986
DOI:10.1007/s11090-013-9480-6