Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon
In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grai...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2013-11, Vol.382, p.41-46 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | |
container_start_page | 41 |
container_title | Journal of crystal growth |
container_volume | 382 |
creator | Schmid, E. Funke, C. Behm, T. Pätzold, O. Berek, H. Stelter, M. |
description | In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given.
•Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals. |
doi_str_mv | 10.1016/j.jcrysgro.2013.07.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024813005320</els_id><sourcerecordid>1475560999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvILMR3Mx4M5lMMjul-FMouNGVi5BmMiUlTWqSqfTtTam6dXMvB75zT3IQusZQYcDt3bpaq7CPq-CrGjCpgFVA2hM0wZyRkgLUp2iSZ11C3fBzdBHjGiA7MUzQx9ztdExmJZPxrvBD0ZtovTrKmMKo0hh0LIwrglkuvSsL6fosVz6VOfPLFZvRJnN4QpLWGqeLaKxR3l2is0HaqK9-9hS9Pz2-zV7KxevzfPawKFUDPJVMEt0RTmBQXJKG9rxZNnRgsqu5orSroScaVM96JoeODVADcNAkSyIb3JApuj3e3Qb_OebfiI2JSlsrnfZjFJhCSzg9lPMv2jBKW-i6LqPtEVXBxxj0ILbBbGTYCwziULxYi9_ixeG2ACZy8dl485Mho5J2CNIpE__cNWMd5UAyd3_kdO5mZ3QQURntlO5N0CqJ3pv_or4BjyWd8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475560999</pqid></control><display><type>article</type><title>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schmid, E. ; Funke, C. ; Behm, T. ; Pätzold, O. ; Berek, H. ; Stelter, M.</creator><creatorcontrib>Schmid, E. ; Funke, C. ; Behm, T. ; Pätzold, O. ; Berek, H. ; Stelter, M.</creatorcontrib><description>In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given.
•Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2013.07.036</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal structure ; A1. Defects ; A2. Bridgman technique ; A2. Edge defined film fed growth ; A2. Growth from melt ; Alignment ; B2. Semiconducting silicon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Linear defects: dislocations, disclinations ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Solid-solid transitions ; Specific phase transitions ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of crystal growth, 2013-11, Vol.382, p.41-46</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</citedby><cites>FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2013.07.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27795803$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmid, E.</creatorcontrib><creatorcontrib>Funke, C.</creatorcontrib><creatorcontrib>Behm, T.</creatorcontrib><creatorcontrib>Pätzold, O.</creatorcontrib><creatorcontrib>Berek, H.</creatorcontrib><creatorcontrib>Stelter, M.</creatorcontrib><title>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</title><title>Journal of crystal growth</title><description>In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given.
•Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals.</description><subject>A1. Crystal structure</subject><subject>A1. Defects</subject><subject>A2. Bridgman technique</subject><subject>A2. Edge defined film fed growth</subject><subject>A2. Growth from melt</subject><subject>Alignment</subject><subject>B2. Semiconducting silicon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvILMR3Mx4M5lMMjul-FMouNGVi5BmMiUlTWqSqfTtTam6dXMvB75zT3IQusZQYcDt3bpaq7CPq-CrGjCpgFVA2hM0wZyRkgLUp2iSZ11C3fBzdBHjGiA7MUzQx9ztdExmJZPxrvBD0ZtovTrKmMKo0hh0LIwrglkuvSsL6fosVz6VOfPLFZvRJnN4QpLWGqeLaKxR3l2is0HaqK9-9hS9Pz2-zV7KxevzfPawKFUDPJVMEt0RTmBQXJKG9rxZNnRgsqu5orSroScaVM96JoeODVADcNAkSyIb3JApuj3e3Qb_OebfiI2JSlsrnfZjFJhCSzg9lPMv2jBKW-i6LqPtEVXBxxj0ILbBbGTYCwziULxYi9_ixeG2ACZy8dl485Mho5J2CNIpE__cNWMd5UAyd3_kdO5mZ3QQURntlO5N0CqJ3pv_or4BjyWd8g</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Schmid, E.</creator><creator>Funke, C.</creator><creator>Behm, T.</creator><creator>Pätzold, O.</creator><creator>Berek, H.</creator><creator>Stelter, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</title><author>Schmid, E. ; Funke, C. ; Behm, T. ; Pätzold, O. ; Berek, H. ; Stelter, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A1. Crystal structure</topic><topic>A1. Defects</topic><topic>A2. Bridgman technique</topic><topic>A2. Edge defined film fed growth</topic><topic>A2. Growth from melt</topic><topic>Alignment</topic><topic>B2. Semiconducting silicon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmid, E.</creatorcontrib><creatorcontrib>Funke, C.</creatorcontrib><creatorcontrib>Behm, T.</creatorcontrib><creatorcontrib>Pätzold, O.</creatorcontrib><creatorcontrib>Berek, H.</creatorcontrib><creatorcontrib>Stelter, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmid, E.</au><au>Funke, C.</au><au>Behm, T.</au><au>Pätzold, O.</au><au>Berek, H.</au><au>Stelter, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</atitle><jtitle>Journal of crystal growth</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>382</volume><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given.
•Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2013.07.036</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2013-11, Vol.382, p.41-46 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506385201 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A1. Crystal structure A1. Defects A2. Bridgman technique A2. Edge defined film fed growth A2. Growth from melt Alignment B2. Semiconducting silicon Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Defects and impurities in crystals microstructure Equations of state, phase equilibria, and phase transitions Exact sciences and technology Linear defects: dislocations, disclinations Materials science Methods of crystal growth physics of crystal growth Physics Solid-solid transitions Specific phase transitions Structure of solids and liquids crystallography Structure of specific crystalline solids Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation |
title | Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20dislocation%20structures%20in%20ribbon-%20and%20ingot-grown%20multicrystalline%20silicon&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Schmid,%20E.&rft.date=2013-11-01&rft.volume=382&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2013.07.036&rft_dat=%3Cproquest_cross%3E1475560999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475560999&rft_id=info:pmid/&rft_els_id=S0022024813005320&rfr_iscdi=true |