Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon

In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2013-11, Vol.382, p.41-46
Hauptverfasser: Schmid, E., Funke, C., Behm, T., Pätzold, O., Berek, H., Stelter, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 41
container_title Journal of crystal growth
container_volume 382
creator Schmid, E.
Funke, C.
Behm, T.
Pätzold, O.
Berek, H.
Stelter, M.
description In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given. •Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals.
doi_str_mv 10.1016/j.jcrysgro.2013.07.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024813005320</els_id><sourcerecordid>1475560999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvILMR3Mx4M5lMMjul-FMouNGVi5BmMiUlTWqSqfTtTam6dXMvB75zT3IQusZQYcDt3bpaq7CPq-CrGjCpgFVA2hM0wZyRkgLUp2iSZ11C3fBzdBHjGiA7MUzQx9ztdExmJZPxrvBD0ZtovTrKmMKo0hh0LIwrglkuvSsL6fosVz6VOfPLFZvRJnN4QpLWGqeLaKxR3l2is0HaqK9-9hS9Pz2-zV7KxevzfPawKFUDPJVMEt0RTmBQXJKG9rxZNnRgsqu5orSroScaVM96JoeODVADcNAkSyIb3JApuj3e3Qb_OebfiI2JSlsrnfZjFJhCSzg9lPMv2jBKW-i6LqPtEVXBxxj0ILbBbGTYCwziULxYi9_ixeG2ACZy8dl485Mho5J2CNIpE__cNWMd5UAyd3_kdO5mZ3QQURntlO5N0CqJ3pv_or4BjyWd8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475560999</pqid></control><display><type>article</type><title>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schmid, E. ; Funke, C. ; Behm, T. ; Pätzold, O. ; Berek, H. ; Stelter, M.</creator><creatorcontrib>Schmid, E. ; Funke, C. ; Behm, T. ; Pätzold, O. ; Berek, H. ; Stelter, M.</creatorcontrib><description>In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given. •Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2013.07.036</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal structure ; A1. Defects ; A2. Bridgman technique ; A2. Edge defined film fed growth ; A2. Growth from melt ; Alignment ; B2. Semiconducting silicon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Linear defects: dislocations, disclinations ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Solid-solid transitions ; Specific phase transitions ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of crystal growth, 2013-11, Vol.382, p.41-46</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</citedby><cites>FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2013.07.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27795803$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmid, E.</creatorcontrib><creatorcontrib>Funke, C.</creatorcontrib><creatorcontrib>Behm, T.</creatorcontrib><creatorcontrib>Pätzold, O.</creatorcontrib><creatorcontrib>Berek, H.</creatorcontrib><creatorcontrib>Stelter, M.</creatorcontrib><title>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</title><title>Journal of crystal growth</title><description>In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given. •Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals.</description><subject>A1. Crystal structure</subject><subject>A1. Defects</subject><subject>A2. Bridgman technique</subject><subject>A2. Edge defined film fed growth</subject><subject>A2. Growth from melt</subject><subject>Alignment</subject><subject>B2. Semiconducting silicon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvILMR3Mx4M5lMMjul-FMouNGVi5BmMiUlTWqSqfTtTam6dXMvB75zT3IQusZQYcDt3bpaq7CPq-CrGjCpgFVA2hM0wZyRkgLUp2iSZ11C3fBzdBHjGiA7MUzQx9ztdExmJZPxrvBD0ZtovTrKmMKo0hh0LIwrglkuvSsL6fosVz6VOfPLFZvRJnN4QpLWGqeLaKxR3l2is0HaqK9-9hS9Pz2-zV7KxevzfPawKFUDPJVMEt0RTmBQXJKG9rxZNnRgsqu5orSroScaVM96JoeODVADcNAkSyIb3JApuj3e3Qb_OebfiI2JSlsrnfZjFJhCSzg9lPMv2jBKW-i6LqPtEVXBxxj0ILbBbGTYCwziULxYi9_ixeG2ACZy8dl485Mho5J2CNIpE__cNWMd5UAyd3_kdO5mZ3QQURntlO5N0CqJ3pv_or4BjyWd8g</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Schmid, E.</creator><creator>Funke, C.</creator><creator>Behm, T.</creator><creator>Pätzold, O.</creator><creator>Berek, H.</creator><creator>Stelter, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</title><author>Schmid, E. ; Funke, C. ; Behm, T. ; Pätzold, O. ; Berek, H. ; Stelter, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7a3e93830fc8a345d84b45f7a928c55920d3e0cd7d7af97f020080e3d7a3a4143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A1. Crystal structure</topic><topic>A1. Defects</topic><topic>A2. Bridgman technique</topic><topic>A2. Edge defined film fed growth</topic><topic>A2. Growth from melt</topic><topic>Alignment</topic><topic>B2. Semiconducting silicon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmid, E.</creatorcontrib><creatorcontrib>Funke, C.</creatorcontrib><creatorcontrib>Behm, T.</creatorcontrib><creatorcontrib>Pätzold, O.</creatorcontrib><creatorcontrib>Berek, H.</creatorcontrib><creatorcontrib>Stelter, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmid, E.</au><au>Funke, C.</au><au>Behm, T.</au><au>Pätzold, O.</au><au>Berek, H.</au><au>Stelter, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon</atitle><jtitle>Journal of crystal growth</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>382</volume><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>In this paper, an experimental study of dislocation structures in multicrystalline silicon is presented. The alignment of dislocations in samples from both edge-defined film-fed growth and ingot crystallization by vertical Bridgman growth is investigated. Crystallographic orientations of single grains and dislocation structures are analyzed by electron backscatter diffraction and infrared microscopy. {111} and {211} planes are identified to be the typical crystallographic planes, where dislocations are arranged. It is concluded that {111} and {211} planes are involved in plastic deformation and recovery processes during growth, respectively. In ribbon-grown samples, the dislocations are mainly arranged on {111} slip planes, whereas an arrangement on {211} planes prevails in ingot-grown samples. The influence of the growth and cooling conditions on the final alignment of dislocations in mc-Si is discussed and a possible explanation for a different annealing behaviour of ribbon- and ingot-grown crystals is given. •Dislocation structures in ribbon- and ingot-grown mc-Si are studied systematically.•{111} and {211} planes are identified to be the characteristic crystallographic planes, where dislocations are arranged.•A dislocation arrangement in {111} planes results from plastic deformation, while an arrangement in {211} planes can be attributed to recovery processes.•Growth and cooling conditions play a major role for the alignment and annealing behaviour of dislocations in mc-Si crystals.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2013.07.036</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2013-11, Vol.382, p.41-46
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1506385201
source ScienceDirect Journals (5 years ago - present)
subjects A1. Crystal structure
A1. Defects
A2. Bridgman technique
A2. Edge defined film fed growth
A2. Growth from melt
Alignment
B2. Semiconducting silicon
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Defects and impurities in crystals
microstructure
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Linear defects: dislocations, disclinations
Materials science
Methods of crystal growth
physics of crystal growth
Physics
Solid-solid transitions
Specific phase transitions
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Investigation of dislocation structures in ribbon- and ingot-grown multicrystalline silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20dislocation%20structures%20in%20ribbon-%20and%20ingot-grown%20multicrystalline%20silicon&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Schmid,%20E.&rft.date=2013-11-01&rft.volume=382&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2013.07.036&rft_dat=%3Cproquest_cross%3E1475560999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475560999&rft_id=info:pmid/&rft_els_id=S0022024813005320&rfr_iscdi=true