Quasi-stationary states of the NRT nonlinear Schrödinger equation

With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences “separated” in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2013-09, Vol.392 (18), p.3945-3951
Hauptverfasser: Toranzo, I.V., Plastino, A.R., Dehesa, J.S., Plastino, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences “separated” in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q=1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles. •We explore quasi-stationary solutions of a nonlinear Schrödinger equation based upon the non-extensive thermostatistics.•We show that the NRT equation with quadratic potentials admits q-Gaussian quasi-stationary solutions.•We obtain an exact quasi-stationary solution for the Moshinsky model.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2013.04.034