Pathway mediated microstructures and phase morphologies of asymmetric double crystalline co-oligomers

Various microstructures and phase morphologies of an amphiphilic poly(ethylene oxide)-block-polyethylene (PEO-b-PE) co-oligomer, controlled by topological restriction of PE segments on the tethered PEO chains, were characterized by differential scanning calorimetry (DSC), polarized optical microscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2014, Vol.4 (16), p.7900-7910
Hauptverfasser: Zhang, Xiaoyuan, Ouyang, Zhaofei, Schulze, Robert, Keller, Thomas F., Jandt, Klaus D., Su, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various microstructures and phase morphologies of an amphiphilic poly(ethylene oxide)-block-polyethylene (PEO-b-PE) co-oligomer, controlled by topological restriction of PE segments on the tethered PEO chains, were characterized by differential scanning calorimetry (DSC), polarized optical microscopy (POM), scanning electron microscopy (SEM), and synchrotron radiation wide-angle/small-angle X-ray scattering (WAXS/SAXS) in drop-cast films. The crystallization processes were mediated by two pathways, a one-step crystallization process (I) and a sequential crystallization process (II). Results show that the thermal procedures have great influence on the microstructures and phase morphologies of PEO-b-PE co-oligomer, e.g., negative spherulites with radial stripes were detected in the one-step crystallization process (I), while crystalline texture, which contains a large number of crystals with reduced sizes, formed in the sequential crystallization process (II). Based on our experimental data, the topological restriction effect encountered by PEO chains depends on the hard confinement of PE crystals and the soft confinement of amorphous PE in the two crystallization procedures. The formation mechanisms of the long-range order structures within the co-oligomer were elucidated through morphology models. These nano-patterned structures make the double crystalline block copolymers outstanding candidates for surface modification, micromolding, and optoelectronic devices in nanotechnological and biomedical applications.
ISSN:2046-2069
2046-2069
DOI:10.1039/c3ra47499b