Network-Level Power-Performance Trade-Off in Wearable Activity Recognition: A Dynamic Sensor Selection Approach

Wearable gesture recognition enables context aware applications and unobtrusive HCI. It is realized by applying machine learning techniques to data from on-body sensor nodes. We present an gesture recognition system minimizing power while maintaining a run-time application defined performance target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on embedded computing systems 2012-09, Vol.11 (3), p.1-30
Hauptverfasser: Zappi, Piero, Roggen, Daniel, Farella, Elisabetta, Tröster, Gerhard, Benini, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable gesture recognition enables context aware applications and unobtrusive HCI. It is realized by applying machine learning techniques to data from on-body sensor nodes. We present an gesture recognition system minimizing power while maintaining a run-time application defined performance target through dynamic sensor selection. Compared to the non managed approach optimized for recognition accuracy (95% accuracy), our technique can extend network lifetime by 4 times with accuracy >90% and by 9 times with accuracy >70%. We characterize the approach and outline its applicability to other scenarios.
ISSN:1539-9087
1558-3465
DOI:10.1145/2345770.2345781