Understanding Cardinality Estimation Using Entropy Maximization

Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on database systems 2012-02, Vol.37 (1), p.1-31
Hauptverfasser: RE, Christopher, SUCIU, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 1
container_title ACM transactions on database systems
container_volume 37
creator RE, Christopher
SUCIU, Dan
description Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.
doi_str_mv 10.1145/2109196.2109202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506381341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506381341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKtrt7MR3Ey9N6-ZrERKfUDFjV2HTJqRyDRTkxSsv96pHVydxXnA-Qi5RpghcnFHERQqOTsoBXpCJihEVXLJ-SmZAJO0FArFOblI6RMAeK2qCblfhbWLKZuw9uGjmJs4qOl83heLlP3GZN-HYpUO5iLk2G_3xav59hv_82ddkrPWdMldjTolq8fF-_y5XL49vcwflqVlXOQSacVBAOWyqqjjjeO8ddJQcI1yDXAla0BWy8q2VElHGzoE1jU3gBaFYWxKbo-729h_7VzKeuOTdV1ngut3SaMAyWpkHIfo3TFqY59SdK3exuFI3GsEfUClR1R6RDU0bsZxk6zp2miC9em_RoVUAzlgv4ZcZ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506381341</pqid></control><display><type>article</type><title>Understanding Cardinality Estimation Using Entropy Maximization</title><source>ACM Digital Library Complete</source><creator>RE, Christopher ; SUCIU, Dan</creator><creatorcontrib>RE, Christopher ; SUCIU, Dan</creatorcontrib><description>Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.</description><identifier>ISSN: 0362-5915</identifier><identifier>EISSN: 1557-4644</identifier><identifier>DOI: 10.1145/2109196.2109202</identifier><identifier>CODEN: ATDSD3</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software</subject><ispartof>ACM transactions on database systems, 2012-02, Vol.37 (1), p.1-31</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</citedby><cites>FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25699150$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RE, Christopher</creatorcontrib><creatorcontrib>SUCIU, Dan</creatorcontrib><title>Understanding Cardinality Estimation Using Entropy Maximization</title><title>ACM transactions on database systems</title><description>Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0362-5915</issn><issn>1557-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKtrt7MR3Ey9N6-ZrERKfUDFjV2HTJqRyDRTkxSsv96pHVydxXnA-Qi5RpghcnFHERQqOTsoBXpCJihEVXLJ-SmZAJO0FArFOblI6RMAeK2qCblfhbWLKZuw9uGjmJs4qOl83heLlP3GZN-HYpUO5iLk2G_3xav59hv_82ddkrPWdMldjTolq8fF-_y5XL49vcwflqVlXOQSacVBAOWyqqjjjeO8ddJQcI1yDXAla0BWy8q2VElHGzoE1jU3gBaFYWxKbo-729h_7VzKeuOTdV1ngut3SaMAyWpkHIfo3TFqY59SdK3exuFI3GsEfUClR1R6RDU0bsZxk6zp2miC9em_RoVUAzlgv4ZcZ0A</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>RE, Christopher</creator><creator>SUCIU, Dan</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Understanding Cardinality Estimation Using Entropy Maximization</title><author>RE, Christopher ; SUCIU, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RE, Christopher</creatorcontrib><creatorcontrib>SUCIU, Dan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on database systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RE, Christopher</au><au>SUCIU, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Cardinality Estimation Using Entropy Maximization</atitle><jtitle>ACM transactions on database systems</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>0362-5915</issn><eissn>1557-4644</eissn><coden>ATDSD3</coden><abstract>Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/2109196.2109202</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-5915
ispartof ACM transactions on database systems, 2012-02, Vol.37 (1), p.1-31
issn 0362-5915
1557-4644
language eng
recordid cdi_proquest_miscellaneous_1506381341
source ACM Digital Library Complete
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Software
title Understanding Cardinality Estimation Using Entropy Maximization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Cardinality%20Estimation%20Using%20Entropy%20Maximization&rft.jtitle=ACM%20transactions%20on%20database%20systems&rft.au=RE,%20Christopher&rft.date=2012-02-01&rft.volume=37&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=0362-5915&rft.eissn=1557-4644&rft.coden=ATDSD3&rft_id=info:doi/10.1145/2109196.2109202&rft_dat=%3Cproquest_cross%3E1506381341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506381341&rft_id=info:pmid/&rfr_iscdi=true