Understanding Cardinality Estimation Using Entropy Maximization
Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of...
Gespeichert in:
Veröffentlicht in: | ACM transactions on database systems 2012-02, Vol.37 (1), p.1-31 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on database systems |
container_volume | 37 |
creator | RE, Christopher SUCIU, Dan |
description | Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries. |
doi_str_mv | 10.1145/2109196.2109202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506381341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506381341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKtrt7MR3Ey9N6-ZrERKfUDFjV2HTJqRyDRTkxSsv96pHVydxXnA-Qi5RpghcnFHERQqOTsoBXpCJihEVXLJ-SmZAJO0FArFOblI6RMAeK2qCblfhbWLKZuw9uGjmJs4qOl83heLlP3GZN-HYpUO5iLk2G_3xav59hv_82ddkrPWdMldjTolq8fF-_y5XL49vcwflqVlXOQSacVBAOWyqqjjjeO8ddJQcI1yDXAla0BWy8q2VElHGzoE1jU3gBaFYWxKbo-729h_7VzKeuOTdV1ngut3SaMAyWpkHIfo3TFqY59SdK3exuFI3GsEfUClR1R6RDU0bsZxk6zp2miC9em_RoVUAzlgv4ZcZ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506381341</pqid></control><display><type>article</type><title>Understanding Cardinality Estimation Using Entropy Maximization</title><source>ACM Digital Library Complete</source><creator>RE, Christopher ; SUCIU, Dan</creator><creatorcontrib>RE, Christopher ; SUCIU, Dan</creatorcontrib><description>Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.</description><identifier>ISSN: 0362-5915</identifier><identifier>EISSN: 1557-4644</identifier><identifier>DOI: 10.1145/2109196.2109202</identifier><identifier>CODEN: ATDSD3</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software</subject><ispartof>ACM transactions on database systems, 2012-02, Vol.37 (1), p.1-31</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</citedby><cites>FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25699150$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RE, Christopher</creatorcontrib><creatorcontrib>SUCIU, Dan</creatorcontrib><title>Understanding Cardinality Estimation Using Entropy Maximization</title><title>ACM transactions on database systems</title><description>Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0362-5915</issn><issn>1557-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKtrt7MR3Ey9N6-ZrERKfUDFjV2HTJqRyDRTkxSsv96pHVydxXnA-Qi5RpghcnFHERQqOTsoBXpCJihEVXLJ-SmZAJO0FArFOblI6RMAeK2qCblfhbWLKZuw9uGjmJs4qOl83heLlP3GZN-HYpUO5iLk2G_3xav59hv_82ddkrPWdMldjTolq8fF-_y5XL49vcwflqVlXOQSacVBAOWyqqjjjeO8ddJQcI1yDXAla0BWy8q2VElHGzoE1jU3gBaFYWxKbo-729h_7VzKeuOTdV1ngut3SaMAyWpkHIfo3TFqY59SdK3exuFI3GsEfUClR1R6RDU0bsZxk6zp2miC9em_RoVUAzlgv4ZcZ0A</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>RE, Christopher</creator><creator>SUCIU, Dan</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Understanding Cardinality Estimation Using Entropy Maximization</title><author>RE, Christopher ; SUCIU, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-1274050246772e4be44fe6a20eb9eb04968013867cf296e2b244fd84a01c15a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RE, Christopher</creatorcontrib><creatorcontrib>SUCIU, Dan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on database systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RE, Christopher</au><au>SUCIU, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Cardinality Estimation Using Entropy Maximization</atitle><jtitle>ACM transactions on database systems</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>0362-5915</issn><eissn>1557-4644</eissn><coden>ATDSD3</coden><abstract>Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/2109196.2109202</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-5915 |
ispartof | ACM transactions on database systems, 2012-02, Vol.37 (1), p.1-31 |
issn | 0362-5915 1557-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506381341 |
source | ACM Digital Library Complete |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Software |
title | Understanding Cardinality Estimation Using Entropy Maximization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Cardinality%20Estimation%20Using%20Entropy%20Maximization&rft.jtitle=ACM%20transactions%20on%20database%20systems&rft.au=RE,%20Christopher&rft.date=2012-02-01&rft.volume=37&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=0362-5915&rft.eissn=1557-4644&rft.coden=ATDSD3&rft_id=info:doi/10.1145/2109196.2109202&rft_dat=%3Cproquest_cross%3E1506381341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506381341&rft_id=info:pmid/&rfr_iscdi=true |