Understanding Cardinality Estimation Using Entropy Maximization
Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of...
Gespeichert in:
Veröffentlicht in: | ACM transactions on database systems 2012-02, Vol.37 (1), p.1-31 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this article we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries. |
---|---|
ISSN: | 0362-5915 1557-4644 |
DOI: | 10.1145/2109196.2109202 |