Scalable real-time volumetric surface reconstruction

We address the fundamental challenge of scalability for real-time volumetric surface reconstruction methods. We design a memory efficient, hierarchical data structure for commodity graphics hardware, which supports live reconstruction of large-scale scenes with fine geometric details. Our sparse dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2013-07, Vol.32 (4), p.1-16
Hauptverfasser: Chen, Jiawen, Bautembach, Dennis, Izadi, Shahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the fundamental challenge of scalability for real-time volumetric surface reconstruction methods. We design a memory efficient, hierarchical data structure for commodity graphics hardware, which supports live reconstruction of large-scale scenes with fine geometric details. Our sparse data structure fuses overlapping depth maps from a moving depth camera into a single volumetric representation, from which detailed surface models are extracted. Our hierarchy losslessly streams data bidirectionally between GPU and host, allowing for unbounded reconstructions. Our pipeline, comprised of depth map post-processing, camera pose estimation, volumetric fusion, surface extraction, and streaming, runs entirely in real-time. We experimentally demonstrate that a shallow hierarchy with relatively large branching factors yields the best memory/speed tradeoff, consuming an order of magnitude less memory than a regular grid. We compare an implementation of our data structure to existing methods and demonstrate higher-quality reconstructions on a variety of large-scale scenes, all captured in real-time.
ISSN:0730-0301
1557-7368
DOI:10.1145/2461912.2461940