Feature-based adaptive texture visualization for vector field
An adaptive sparse texture rendering method is proposed to solve for occlusion effects when visualizing 3D flows, building on an extensible fuzzy feature extraction approach. First, the flow feature is described by fuzzy theory and rules for some typical features are obtained. The significance value...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2013-09, Vol.56 (9), p.164-177 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptive sparse texture rendering method is proposed to solve for occlusion effects when visualizing 3D flows, building on an extensible fuzzy feature extraction approach. First, the flow feature is described by fuzzy theory and rules for some typical features are obtained. The significance value for each voxel is then calculated by a clustering method under the minimum square-sum rule. An adaptive Gaussian noise field is obtained from the significance field by a noise generation process, and is used as the input for the LIC convolution process. We also present two cool/warm-illumination-based approaches to overcome the shortcomings of texture-based visualization methods, which are usually unable to represent the flow direction. The experiments show that our method can effectively extract the typical flow feature region and can be extended to other flow features easily, and the adaptive technique used lessens the occlusion effects significantly. Furthermore, the main disadvantage of the texture-based method, that is, the direction representation problem, can also be solved by the proposed cool/warm illumination methods. |
---|---|
ISSN: | 1674-733X 1869-1919 |
DOI: | 10.1007/s11432-011-4505-3 |