Lower bounds on Ricci curvature and quantitative behavior of singular sets

Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η >0, 0< r ≤1, the k-th effective singular stratum satisfying . Sharpe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2013-02, Vol.191 (2), p.321-339
Hauptverfasser: Cheeger, Jeff, Naber, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 2
container_start_page 321
container_title Inventiones mathematicae
container_volume 191
creator Cheeger, Jeff
Naber, Aaron
description Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η >0, 0< r ≤1, the k-th effective singular stratum satisfying . Sharpening the known Hausdorff dimension bound , we prove that for all y , the volume of the r -tubular neighborhood of satisfies . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let denote the set of points at which the C 2 -harmonic radius is ≤ r . If also the are Kähler-Einstein with L 2 curvature bound, , then for all y . In the Kähler-Einstein case, without assuming any integral curvature bound on the , we obtain a slightly weaker volume bound on which yields an a priori L p curvature bound for all p
doi_str_mv 10.1007/s00222-012-0394-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506371459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872324001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d5d70c3fcb040a0f80e62df222b6fd86eeec2351cbb769d4e567d7166540e9b73</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvAi5fVl2R30xxF_EtBED2HbPZt3dImbbKp-O1NWQ8ieHi8w_xmGIaQcwZXDEBeRwDOeQEsn1BlIQ7IhJWCF4wreUgmWYZCKQbH5CTGJUAWJZ-Q57n_xEAbn1wbqXf0tbe2pzaFnRlSQGpcS7fJuKEfzNDvkDb4YXa9D9R3NPZukVYm0IhDPCVHnVlFPPv5U_J-f_d2-1jMXx6ebm_mhRWlGoq2aiVY0dkGSjDQzQBr3na5fVN37axGRMtFxWzTyFq1JVa1bCWr66oEVI0UU3I55m6C3yaMg1730eJqZRz6FDWroBaSlZXK6MUfdOlTcLmdZlxyBhIYyxQbKRt8jAE7vQn92oQvzUDv19Xjujqvq_frapE9fPTEzLoFhl_J_5q-AX8hfDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272107011</pqid></control><display><type>article</type><title>Lower bounds on Ricci curvature and quantitative behavior of singular sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cheeger, Jeff ; Naber, Aaron</creator><creatorcontrib>Cheeger, Jeff ; Naber, Aaron</creatorcontrib><description>Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η &gt;0, 0&lt; r ≤1, the k-th effective singular stratum satisfying . Sharpening the known Hausdorff dimension bound , we prove that for all y , the volume of the r -tubular neighborhood of satisfies . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let denote the set of points at which the C 2 -harmonic radius is ≤ r . If also the are Kähler-Einstein with L 2 curvature bound, , then for all y . In the Kähler-Einstein case, without assuming any integral curvature bound on the , we obtain a slightly weaker volume bound on which yields an a priori L p curvature bound for all p &lt;2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-012-0394-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Curvature ; Mathematics ; Mathematics and Statistics</subject><ispartof>Inventiones mathematicae, 2013-02, Vol.191 (2), p.321-339</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d5d70c3fcb040a0f80e62df222b6fd86eeec2351cbb769d4e567d7166540e9b73</citedby><cites>FETCH-LOGICAL-c349t-d5d70c3fcb040a0f80e62df222b6fd86eeec2351cbb769d4e567d7166540e9b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-012-0394-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-012-0394-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheeger, Jeff</creatorcontrib><creatorcontrib>Naber, Aaron</creatorcontrib><title>Lower bounds on Ricci curvature and quantitative behavior of singular sets</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η &gt;0, 0&lt; r ≤1, the k-th effective singular stratum satisfying . Sharpening the known Hausdorff dimension bound , we prove that for all y , the volume of the r -tubular neighborhood of satisfies . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let denote the set of points at which the C 2 -harmonic radius is ≤ r . If also the are Kähler-Einstein with L 2 curvature bound, , then for all y . In the Kähler-Einstein case, without assuming any integral curvature bound on the , we obtain a slightly weaker volume bound on which yields an a priori L p curvature bound for all p &lt;2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.</description><subject>Curvature</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwFvAi5fVl2R30xxF_EtBED2HbPZt3dImbbKp-O1NWQ8ieHi8w_xmGIaQcwZXDEBeRwDOeQEsn1BlIQ7IhJWCF4wreUgmWYZCKQbH5CTGJUAWJZ-Q57n_xEAbn1wbqXf0tbe2pzaFnRlSQGpcS7fJuKEfzNDvkDb4YXa9D9R3NPZukVYm0IhDPCVHnVlFPPv5U_J-f_d2-1jMXx6ebm_mhRWlGoq2aiVY0dkGSjDQzQBr3na5fVN37axGRMtFxWzTyFq1JVa1bCWr66oEVI0UU3I55m6C3yaMg1730eJqZRz6FDWroBaSlZXK6MUfdOlTcLmdZlxyBhIYyxQbKRt8jAE7vQn92oQvzUDv19Xjujqvq_frapE9fPTEzLoFhl_J_5q-AX8hfDY</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Cheeger, Jeff</creator><creator>Naber, Aaron</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130201</creationdate><title>Lower bounds on Ricci curvature and quantitative behavior of singular sets</title><author>Cheeger, Jeff ; Naber, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d5d70c3fcb040a0f80e62df222b6fd86eeec2351cbb769d4e567d7166540e9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Curvature</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheeger, Jeff</creatorcontrib><creatorcontrib>Naber, Aaron</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheeger, Jeff</au><au>Naber, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on Ricci curvature and quantitative behavior of singular sets</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>191</volume><issue>2</issue><spage>321</spage><epage>339</epage><pages>321-339</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η &gt;0, 0&lt; r ≤1, the k-th effective singular stratum satisfying . Sharpening the known Hausdorff dimension bound , we prove that for all y , the volume of the r -tubular neighborhood of satisfies . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let denote the set of points at which the C 2 -harmonic radius is ≤ r . If also the are Kähler-Einstein with L 2 curvature bound, , then for all y . In the Kähler-Einstein case, without assuming any integral curvature bound on the , we obtain a slightly weaker volume bound on which yields an a priori L p curvature bound for all p &lt;2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00222-012-0394-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2013-02, Vol.191 (2), p.321-339
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_miscellaneous_1506371459
source SpringerLink Journals - AutoHoldings
subjects Curvature
Mathematics
Mathematics and Statistics
title Lower bounds on Ricci curvature and quantitative behavior of singular sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20Ricci%20curvature%20and%20quantitative%20behavior%20of%20singular%20sets&rft.jtitle=Inventiones%20mathematicae&rft.au=Cheeger,%20Jeff&rft.date=2013-02-01&rft.volume=191&rft.issue=2&rft.spage=321&rft.epage=339&rft.pages=321-339&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-012-0394-3&rft_dat=%3Cproquest_cross%3E2872324001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272107011&rft_id=info:pmid/&rfr_iscdi=true