Lower bounds on Ricci curvature and quantitative behavior of singular sets
Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η >0, 0< r ≤1, the k-th effective singular stratum satisfying . Sharpe...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2013-02, Vol.191 (2), p.321-339 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
Y
n
denote the Gromov-Hausdorff limit
of v-noncollapsed Riemannian manifolds with
. The singular set
has a stratification
, where
if no tangent cone at
y
splits off a factor ℝ
k
+1
isometrically. Here, we define for all
η
>0, 0<
r
≤1, the
k-th effective singular stratum
satisfying
. Sharpening the known Hausdorff dimension bound
, we prove that for all
y
, the volume of the
r
-tubular neighborhood of
satisfies
. The proof involves a
quantitative differentiation
argument. This result has applications to Einstein manifolds. Let
denote the set of points at which the
C
2
-harmonic radius is ≤
r
. If also the
are Kähler-Einstein with
L
2
curvature bound,
, then
for all
y
. In the Kähler-Einstein case, without assuming any integral curvature bound on the
, we obtain a slightly weaker volume bound on
which yields an a priori
L
p
curvature bound for all
p |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-012-0394-3 |