Lower bounds on Ricci curvature and quantitative behavior of singular sets

Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η >0, 0< r ≤1, the k-th effective singular stratum satisfying . Sharpe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2013-02, Vol.191 (2), p.321-339
Hauptverfasser: Cheeger, Jeff, Naber, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y n denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with . The singular set has a stratification , where if no tangent cone at y splits off a factor ℝ k +1 isometrically. Here, we define for all η >0, 0< r ≤1, the k-th effective singular stratum satisfying . Sharpening the known Hausdorff dimension bound , we prove that for all y , the volume of the r -tubular neighborhood of satisfies . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let denote the set of points at which the C 2 -harmonic radius is ≤ r . If also the are Kähler-Einstein with L 2 curvature bound, , then for all y . In the Kähler-Einstein case, without assuming any integral curvature bound on the , we obtain a slightly weaker volume bound on which yields an a priori L p curvature bound for all p
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-012-0394-3