The internal Steiner tree problem: Hardness and approximations

Given a graph G=(V,E) with a cost function c:E→R+ and a vertex subset R⊂V, an internal Steiner tree is a Steiner tree that contains all the vertices in R, and such that each vertex in R must be an internal vertex. The internal Steiner tree problem involves finding an internal Steiner tree T whose to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2013-02, Vol.29 (1), p.27-43
Hauptverfasser: Huang, Chao-Wen, Lee, Chia-Wei, Gao, Huang-Ming, Hsieh, Sun-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a graph G=(V,E) with a cost function c:E→R+ and a vertex subset R⊂V, an internal Steiner tree is a Steiner tree that contains all the vertices in R, and such that each vertex in R must be an internal vertex. The internal Steiner tree problem involves finding an internal Steiner tree T whose total cost ∑(u,v)∈E(T)c(u,v) is the minimum. In this paper, we first show that the internal Steiner tree problem is MAX SNP-hard. We then present a (2ρ+1)-approximation algorithm for solving the problem on complete graphs, where ρ is an approximation ratio for the Steiner tree problem. Currently, the best-known ρ is ln4+ϵ
ISSN:0885-064X
1090-2708
DOI:10.1016/j.jco.2012.08.005