A circuit-architecture co-optimization framework for exploring nonvolatile memory hierarchies
Many new memory technologies are available for building future energy-efficient memory hierarchies. It is necessary to have a framework that can quickly find the optimal memory technology at each hierarchy level. In this work, we first build a circuit-architecture joint design space exploration fram...
Gespeichert in:
Veröffentlicht in: | ACM transactions on architecture and code optimization 2013-12, Vol.10 (4), p.1-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many new memory technologies are available for building future energy-efficient memory hierarchies. It is necessary to have a framework that can quickly find the optimal memory technology at each hierarchy level. In this work, we first build a circuit-architecture joint design space exploration framework by combining RC circuit analysis and Artificial Neural Network (ANN)-based performance modeling. Then, we use this framework to evaluate some emerging nonvolatile memory hierarchies. We demonstrate that a Resistive RAM (ReRAM)-based cache hierarchy on an 8-core Chip-Multiprocessor (CMP) system can achieve a 24% Energy Delay Product (EDP) improvement and a 36% Energy Delay Area Product (EDAP) improvement compared to a conventional hierarchy with SRAM on-chip caches and DRAM main memory. |
---|---|
ISSN: | 1544-3566 1544-3973 |
DOI: | 10.1145/2541228.2541230 |