On the trigonometric moment problem

The trigonometric moment problem arises from the study of one-parameter families of centers in polynomial vector fields. It seeks to classify the trigonometric polynomials $Q$ which are orthogonal to all powers of a trigonometric polynomial $P$. We show that this problem has a simple and natural sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2014-02, Vol.34 (1), p.1-20
Hauptverfasser: ÁLVAREZ, AMELIA, BRAVO, JOSÉ LUIS, CHRISTOPHER, COLIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The trigonometric moment problem arises from the study of one-parameter families of centers in polynomial vector fields. It seeks to classify the trigonometric polynomials $Q$ which are orthogonal to all powers of a trigonometric polynomial $P$. We show that this problem has a simple and natural solution under certain conditions on the monodromy group of the Laurent polynomial associated to $P$. In the case of real trigonometric polynomials, which is the primary motivation of the problem, our conditions are shown to hold for all trigonometric polynomials of degree 15 or less. In the complex case, we show that there are a small number of exceptional monodromy groups up to degree 30 where the conditions fail to hold and show how counterexamples can be constructed in several of these cases.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2012.143