Stabilization in a two-dimensional chemotaxis-Navier–Stokes system
This paper deals with an initial-boundary value problem for the system n t + u · ∇ n = Δ n - ∇ · ( n χ ( c ) ∇ c ) , x ∈ Ω , t > 0 , c t + u · ∇ c = Δ c - n f ( c ) , x ∈ Ω , t > 0 , u t + κ ( u · ∇ ) u = Δ u + ∇ P + n ∇ ϕ , x ∈ Ω , t > 0 , ∇ · u = 0 , x ∈ Ω , t > 0 , which has been prop...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2014-02, Vol.211 (2), p.455-487 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with an initial-boundary value problem for the system
n
t
+
u
·
∇
n
=
Δ
n
-
∇
·
(
n
χ
(
c
)
∇
c
)
,
x
∈
Ω
,
t
>
0
,
c
t
+
u
·
∇
c
=
Δ
c
-
n
f
(
c
)
,
x
∈
Ω
,
t
>
0
,
u
t
+
κ
(
u
·
∇
)
u
=
Δ
u
+
∇
P
+
n
∇
ϕ
,
x
∈
Ω
,
t
>
0
,
∇
·
u
=
0
,
x
∈
Ω
,
t
>
0
,
which has been proposed as a model for the spatio-temporal evolution of populations of swimming aerobic bacteria. It is known that in bounded convex domains
Ω
⊂
R
2
and under appropriate assumptions on the parameter functions χ,
f
and ϕ, for each
κ
∈
R
and all sufficiently smooth initial data this problem possesses a unique global-in-time classical solution. The present work asserts that this solution stabilizes to the spatially uniform equilibrium
(
n
0
¯
,
0
,
0
)
, where
n
0
¯
:
=
1
|
Ω
|
∫
Ω
n
(
x
,
0
)
d
x
, in the sense that as
t
→∞,
n
(
·
,
t
)
→
n
0
¯
,
c
(
·
,
t
)
→
0
and
u
(
·
,
t
)
→
0
hold with respect to the norm in
L
∞
(
Ω
)
. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-013-0678-9 |