Contractibility of the space of rational maps
We define an algebro-geometric model for the space of rational maps from a smooth curve X to an algebraic group G , and show that this space is homologically contractible. As a consequence, we deduce that the moduli space of G -bundles on X is uniformized by the appropriate rational version of the a...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2013, Vol.191 (1), p.91-196 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define an algebro-geometric model for the space of rational maps from a smooth curve
X
to an algebraic group
G
, and show that this space is homologically contractible. As a consequence, we deduce that the moduli space
of
G
-bundles on
X
is uniformized by the appropriate rational version of the affine Grassmannian, where the uniformizing map has contractible fibers. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-012-0392-5 |