Enhanced ferroelectric and dielectric properties of (111)-oriented highly cation-ordered PbSc0.5Ta0.5O3 thin films

Cation-ordered (111)-oriented epitaxial PbSc0.5Ta0.5O3 (PST) thin films were deposited by pulsed laser deposition on SrRuO3-electroded SrTiO3 (111) substrates at three different temperatures of 525 °C, 550 °C, and 575 °C. All the films were well crystalline and (111)-oriented at all the three growth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-12, Vol.114 (22)
Hauptverfasser: Chopra, Anuj, Birajdar, Balaji I., Kim, Yunseok, Alexe, Marin, Hesse, Dietrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cation-ordered (111)-oriented epitaxial PbSc0.5Ta0.5O3 (PST) thin films were deposited by pulsed laser deposition on SrRuO3-electroded SrTiO3 (111) substrates at three different temperatures of 525 °C, 550 °C, and 575 °C. All the films were well crystalline and (111)-oriented at all the three growth temperatures; however, the films deposited at the temperatures other than 550 °C exhibited the presence of a pyrochlore phase. X-ray diffraction analysis and transmission electron microscopy measurements revealed that the films were epitaxial and highly cation-ordered. In comparison to (001)-oriented PST films, (111)-oriented films on SrRuO3/SrTiO3 (111) exhibited enhanced ferroelectric and dielectric properties with a broad size distribution of cation-ordered domains (5–100 nm). At a measurement temperature of 100 K, the remnant polarization of PST (111) films is almost √3 times larger than the remnant polarization observed for (001)-oriented PST films, which is attributed to the (111) orientation of the films, as the spontaneous polarization in PST lies close to the [111] direction. The observed dielectric constant and loss at 1 kHz were around 1145 and 0.11, respectively. The dielectric constant is thus almost three times higher than for previously reported (001)-oriented PST thin films, most probably due to the enhancement in cation-ordering.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4846817