Validated computation of certain hypergeometric functions
We present an efficient algorithm for the validated high-precision computation of real continued fractions, accurate to the last digit. The algorithm proceeds in two stages. In the first stage, computations are done in double precision. A forward error analysis and some heuristics are used to obtain...
Gespeichert in:
Veröffentlicht in: | ACM transactions on mathematical software 2011-12, Vol.38 (2), p.1-20 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an efficient algorithm for the validated high-precision computation of real continued fractions, accurate to the last digit. The algorithm proceeds in two stages. In the first stage, computations are done in double precision. A forward error analysis and some heuristics are used to obtain an a priori error estimate. This estimate is used in the second stage to compute the fraction to the requested accuracy in high precision (adaptively incrementing the precision for reasons of efficiency). A running error analysis and techniques from interval arithmetic are used to validate the result.
As an application, we use this algorithm to compute Gauss and confluent hypergeometric functions when one of the numerator parameters is a positive integer. |
---|---|
ISSN: | 0098-3500 1557-7295 |
DOI: | 10.1145/2049673.2049675 |