Global Solutions of Nonlinear Wave Equations in Time Dependent Inhomogeneous Media

We consider the problem of small data global existence for a class of semilinear wave equations with null condition on a Lorentzian background with a time dependent metric g coinciding with the Minkowski metric outside the cylinder . We show that the small data global existence result can be reduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2013-08, Vol.209 (2), p.683-728
1. Verfasser: Yang, Shiwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of small data global existence for a class of semilinear wave equations with null condition on a Lorentzian background with a time dependent metric g coinciding with the Minkowski metric outside the cylinder . We show that the small data global existence result can be reduced to two integrated local energy estimates and demonstrate that these estimates work in the particular case when g is merely C 1 close to the Minkowski metric. One of the novel aspects of this work is that it applies to equations on backgrounds which do not settle to any particular stationary metric.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-013-0631-y