Global Solutions of Nonlinear Wave Equations in Time Dependent Inhomogeneous Media
We consider the problem of small data global existence for a class of semilinear wave equations with null condition on a Lorentzian background with a time dependent metric g coinciding with the Minkowski metric outside the cylinder . We show that the small data global existence result can be reduced...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2013-08, Vol.209 (2), p.683-728 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of small data global existence for a class of semilinear wave equations with null condition on a Lorentzian background
with a
time dependent metric
g
coinciding with the Minkowski metric outside the cylinder
. We show that the small data global existence result can be reduced to two integrated local energy estimates and demonstrate that these estimates work in the particular case when
g
is merely
C
1
close to the Minkowski metric. One of the novel aspects of this work is that it applies to equations on backgrounds which do not settle to any particular stationary metric. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-013-0631-y |