Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound
We show the ability of poly- d -lysine (PDL) and BSA to form bionanotubes (BNTs) through layer by layer deposition. The process is driven through electrostatic interactions in the interior of a polycarbonate template’s nanopores with a diameter of 400 nm. The BNTs are optimally formed at pH 7.4, whe...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013-11, Vol.15 (11), p.1-11, Article 1931 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show the ability of poly-
d
-lysine (PDL) and BSA to form bionanotubes (BNTs) through layer by layer deposition. The process is driven through electrostatic interactions in the interior of a polycarbonate template’s nanopores with a diameter of 400 nm. The BNTs are optimally formed at pH 7.4, where the difference in the magnitude of opposite charge is largest. The results show that three bilayers are necessary to form a stable BNT. SEM data shows that well-formed, uniform, and strong BNTs are formed when three bilayers are used and progressively malformed nanotubes are observed with two and one bilayer. Our studies on the evaluation of curcumin encapsulation into the BNTs with two different interior layers show that encapsulation is favored when the interior layer is predominantly made of BSA. BNTs with a BSA interior have the most efficient encapsulation with an efficiency reaching a maximum of 45 %. We achieved loading capacities in the range of 0.20–0.27 g/g of BNT. We also report the entrapment/encapsulation of curcumin by BNTs made by mixing first BSA with curcumin in a water ethanol solution and then using the curcumin bound BSA solution with PDL to construct BNTs. The SEM images show that the (PDL/BSA–Cur)
2
BNTs had relatively large hydrophobic cavities demonstrated by the fact that an aqueous solution couldn’t pass through them. |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-013-1931-8 |