The index of an algebraic variety
Let K be the field of fractions of a Henselian discrete valuation ring . Let X K / K be a smooth proper geometrically connected scheme admitting a regular model . We show that the index δ ( X K / K ) of X K / K can be explicitly computed using data pertaining only to the special fiber X k / k of th...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2013-06, Vol.192 (3), p.567-626 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
K
be the field of fractions of a Henselian discrete valuation ring
. Let
X
K
/
K
be a smooth proper geometrically connected scheme admitting a regular model
. We show that the index
δ
(
X
K
/
K
) of
X
K
/
K
can be explicitly computed using data pertaining only to the special fiber
X
k
/
k
of the model
X
.
We give two proofs of this theorem, using two moving lemmas. One moving lemma pertains to horizontal 1-cycles on a regular projective scheme
X
over the spectrum of a semi-local Dedekind domain, and the second moving lemma can be applied to 0-cycles on an
-scheme
X
which need not be regular.
The study of the local algebra needed to prove these moving lemmas led us to introduce an invariant
γ
(
A
) of a singular local ring
: the greatest common divisor of all the Hilbert-Samuel multiplicities
e
(
Q
,
A
), over all
-primary ideals
Q
in
. We relate this invariant
γ
(
A
) to the index of the exceptional divisor in a resolution of the singularity of
, and we give a new way of computing the index of a smooth subvariety
X
/
K
of
over any field
K
, using the invariant
γ
of the local ring at the vertex of a cone over
X
. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-012-0418-z |