On the Koksma–Hlawka inequality
The classical Koksma–Hlawka inequality does not apply to functions with simple discontinuities. Here we state a Koksma–Hlawka type inequality which applies to piecewise smooth functions fχΩ, with f smooth and Ω a Borel subset of [0,1]d: |N−1∑j=1N(fχΩ)(xj)−∫Ωf(x)dx|≤D(Ω,{xj}j=1N)V(f), where D(Ω,{xj}j...
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2013-04, Vol.29 (2), p.158-172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classical Koksma–Hlawka inequality does not apply to functions with simple discontinuities. Here we state a Koksma–Hlawka type inequality which applies to piecewise smooth functions fχΩ, with f smooth and Ω a Borel subset of [0,1]d: |N−1∑j=1N(fχΩ)(xj)−∫Ωf(x)dx|≤D(Ω,{xj}j=1N)V(f), where D(Ω,{xj}j=1N) is the discrepancy D(Ω,{xj}j=1N)=2dsupI⊆[0,1]d{|N−1∑j=1NχΩ∩I(xj)−|Ω∩I||}, the supremum is over all d-dimensional intervals, and V(f) is the total variation V(f)=∑α∈{0,1}d2d−|α|∫[0,1]d|(∂∂x)αf(x)|dx. We state similar results with variation and discrepancy measured by Lp and Lq norms, 1/p+1/q=1, and we also give extensions to compact manifolds. |
---|---|
ISSN: | 0885-064X 1090-2708 |
DOI: | 10.1016/j.jco.2012.10.003 |