Combustion and heat transfer characteristics of oxy-coal combustion in a 100 MWe front-wall-fired furnace

Oxy-coal combustion exhibits different characteristics of combustion, flow and heat transfer from those of air-coal combustion, due to the high concentration of CO2 and H2O in the product gases. Using computational modeling, this study investigated the combustion and wall heat flux (WHF) of a 100 MW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2013-04, Vol.106, p.718-729
Hauptverfasser: PARK, Sanghyun, KIM, Jungeun A, RYU, Changkook, CHAE, Taeyoung, YANG, Won, KIM, Young-Ju, PARK, Ho-Young, LIM, Hee-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxy-coal combustion exhibits different characteristics of combustion, flow and heat transfer from those of air-coal combustion, due to the high concentration of CO2 and H2O in the product gases. Using computational modeling, this study investigated the combustion and wall heat flux (WHF) of a 100 MWe boiler under air- and oxy-coal combustion conditions. The boiler had 12 swirl burners installed on the front wall for thermal input of 284 MWth. Flame temperatures and corresponding WHF in oxy-coal combustion increased linearly as O2 concentration increased from 24% to 30%. The case with 28% O2 achieved the same level of WHF with that of air-coal combustion, which had a similar adiabatic flame temperature. Due to the lower heat capacity, the gas temperature above the burner region lowered more rapidly in air-coal combustion than in oxy-coal combustion. The proportion of char converted by CO2 and H2O increased from approximately 8% in air-coal combustion to 19a23% in oxy-coal combustion. The increased rates of endothermic gasification reactions by CO2 and H2O lowered the temperature in the internal recirculation zone during oxy-coal combustion. This retarded char oxidation upstream of the flames.
ISSN:0016-2361
1873-7153
DOI:10.1016/j.fuel.2012.11.001