Combustion and heat transfer characteristics of oxy-coal combustion in a 100 MWe front-wall-fired furnace
Oxy-coal combustion exhibits different characteristics of combustion, flow and heat transfer from those of air-coal combustion, due to the high concentration of CO2 and H2O in the product gases. Using computational modeling, this study investigated the combustion and wall heat flux (WHF) of a 100 MW...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2013-04, Vol.106, p.718-729 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxy-coal combustion exhibits different characteristics of combustion, flow and heat transfer from those of air-coal combustion, due to the high concentration of CO2 and H2O in the product gases. Using computational modeling, this study investigated the combustion and wall heat flux (WHF) of a 100 MWe boiler under air- and oxy-coal combustion conditions. The boiler had 12 swirl burners installed on the front wall for thermal input of 284 MWth. Flame temperatures and corresponding WHF in oxy-coal combustion increased linearly as O2 concentration increased from 24% to 30%. The case with 28% O2 achieved the same level of WHF with that of air-coal combustion, which had a similar adiabatic flame temperature. Due to the lower heat capacity, the gas temperature above the burner region lowered more rapidly in air-coal combustion than in oxy-coal combustion. The proportion of char converted by CO2 and H2O increased from approximately 8% in air-coal combustion to 19a23% in oxy-coal combustion. The increased rates of endothermic gasification reactions by CO2 and H2O lowered the temperature in the internal recirculation zone during oxy-coal combustion. This retarded char oxidation upstream of the flames. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2012.11.001 |