Pursuing the pre-combustion CCS route in oil refineries – The impact on fired heaters
► The aim is to approach Carbon Capture and Storage (CCS) to refinery fired heaters. ► An identical simplified burner configuration is applied where refinery fuel is replaced with hydrogen. ► Initial simulations indicate that hydrogen replacement do not alter heater operation in a negative way. ► De...
Gespeichert in:
Veröffentlicht in: | Applied energy 2013-02, Vol.102, p.833-839 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► The aim is to approach Carbon Capture and Storage (CCS) to refinery fired heaters. ► An identical simplified burner configuration is applied where refinery fuel is replaced with hydrogen. ► Initial simulations indicate that hydrogen replacement do not alter heater operation in a negative way. ► Despite the higher flame temperature in the hydrogen case, the NOx emissions are not higher. ► The prompt-NO mechanism contributes significantly in the refinery fuel case.
The work presented in this paper investigates the effect of replacing refinery fuel gas in the radiant section burners of a fired heater with hydrogen. The aim is to approach pre-combustion CCS to refinery fired heaters by identifying the impact on heat-, flow- and radiation distribution in the lower radiant section of the fired heater when simply switching refinery gas with hydrogen at equivalent power using the same burner geometrics. Additionally the formation of NOx is considered. The investigations are performed using a conventional Reynolds Average Navier Stokes (RANS), Computational Fluid Dynamics (CFD) approach using detailed reaction kinetics consisting of 325 elementary reactions and 53 species. Simplified and generalized furnace and burner geometries are used in the present work. The results show that approximately the same average wall heat flux density is achieved when the refinery fuel is replaced by hydrogen. However, the distribution of heat on the inner surfaces changes. The hydrogen case has, as expected, a higher flame temperature than the base case, nevertheless, the nitric oxide (NOx) emissions are comparable to base case emissions. Several indications point in the direction of a significant contribution to the base case emissions from the less temperature dependent prompt-NO mechanism, which obviously is not contributing to the hydrogen case emissions. |
---|---|
ISSN: | 0306-2619 1872-9118 |
DOI: | 10.1016/j.apenergy.2012.08.044 |