Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs

► Simulations of CO poisoning in HT-PEMFC with different flow channels are conducted. ► Parallel and serpentine designs result in least and most CO effects, respectively. ► General CO distributions in CLs are similar with different flow channel designs. The performance of high temperature proton exc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2013-04, Vol.104, p.21-41
Hauptverfasser: Jiao, Kui, Zhou, Yibo, Du, Qing, Yin, Yan, Yu, Shuhai, Li, Xianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► Simulations of CO poisoning in HT-PEMFC with different flow channels are conducted. ► Parallel and serpentine designs result in least and most CO effects, respectively. ► General CO distributions in CLs are similar with different flow channel designs. The performance of high temperature proton exchange membrane fuel cell (HT-PEMFC) is significantly affected by the carbon monoxide (CO) in hydrogen fuel, and the flow channel design may influence the CO poisoning characteristics by changing the reactant flow. In this study, three-dimensional non-isothermal simulations are carried out to investigate the comprehensive flow channel design and CO poisoning effects on the performance of HT-PEMFCs. The numerical results show that when pure hydrogen is supplied, the interdigitated design produces the highest power output, the power output with serpentine design is higher than the two parallel designs, and the parallel-Z and parallel-U designs have similar power outputs. The performance degradation caused by CO poisoning is the least significant with parallel flow channel design, but the most significant with serpentine and interdigitated designs because the cross flow through the electrode is stronger. At low cell voltages (high current densities), the highest power outputs are with interdigitated and parallel flow channel designs at low and high CO fractions in the supplied hydrogen, respectively. The general distributions of absorbed hydrogen and CO coverage fractions in anode catalyst layer (CL) are similar for the different flow channel designs. The hydrogen coverage fraction is higher under the channel than under the land, and is also higher on the gas diffusion layer (GDL) side than on the membrane side; and the CO coverage distribution is opposite to the hydrogen coverage distribution.
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2012.10.059