Quantification of Bacterial Uropathogens in Preclinical Samples Using Real-Time PCR Assays

Uropathogenic Escherichia coli (UPEC) and Staphylococcus saprophyticus (S. saprophyticus) are responsible for the majority of community-acquired urinary tract infections (UTI). Agar plating, a gold standard for detection of bacterial uropathogens, is labor intensive, limited for distinguishing betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current microbiology 2014-02, Vol.68 (2), p.220-226
Hauptverfasser: Enderle, Janet L, Miller, Aaron L, Pyles, Richard B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uropathogenic Escherichia coli (UPEC) and Staphylococcus saprophyticus (S. saprophyticus) are responsible for the majority of community-acquired urinary tract infections (UTI). Agar plating, a gold standard for detection of bacterial uropathogens, is labor intensive, limited for distinguishing between environmental contaminants and pathogens, and fails to effectively detect mixed infections. A reliable method for specific and sensitive quantitative assessment of infections would allow cost-effective evaluation of large numbers of experimental samples. A methodology such as quantitative PCR (qPCR) addresses the limitations of agar plating. We developed and validated highly specific and sensitive qPCR assays to assist researchers in the evaluation of potential vaccines and interventions in preclinical models of UPEC and S. saprophyticus UTI. The developed UPEC PCR targeted a highly conserved region of the UPEC hemolysin D (hlyD) gene that reproducibly detected type strains CFT073 and J96 over a 9 log range with high precision. To quantify S. saprophyticus genomes, a separate qPCR assay targeting the Trk transport gene was developed with an 8 log range. Neither assay detected bacterial species predicted to be sample contaminants. Using our optimized workflow that includes automated steps, up to 200 urine or tissue samples can be processed in as few as 3 h. Additionally, sequence comparisons of our primers and probe to other UTI bacterial strains indicated the broad applicability of these assays. These optimized qPCR assays provide a cost-effective and time-saving method for quantification of bacterial burdens in tissues and body fluids to assess the effectiveness of candidate vaccines or interventions.
ISSN:0343-8651
1432-0991
DOI:10.1007/s00284-013-0465-8