Diaphorina citri (Hemiptera: Liviidae) Responses to Microcontroller-Buzzer Communication Signals of Potential Use in Vibration Traps
Monitoring of Diaphorina citri Kuwayama (Hemiptera: Liviidae) populations is an important component of efforts to reduce damage caused by huanglongbing, a devastating disease it vectors in citrus groves. Currently, D. citri is monitored primarily by unbaited sticky traps or visual inspection of tree...
Gespeichert in:
Veröffentlicht in: | The Florida entomologist 2013-12, Vol.96 (4), p.1546-1555 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monitoring of Diaphorina citri Kuwayama (Hemiptera: Liviidae) populations is an important component of efforts to reduce damage caused by huanglongbing, a devastating disease it vectors in citrus groves. Currently, D. citri is monitored primarily by unbaited sticky traps or visual inspection of trees. A potentially more effective method might result from attracting males to vibrational communications produced by females. Males call with wing-buzzing substrate-borne vibrations while searching for females on tree branches and stems. When nearby receptive females detect the calls, they reply immediately in synchronized duets that help direct the males towards them. The spectral and temporal patterns of the duets have been analyzed in previous studies and have been mimicked successfully with computer-operated vibration exciters. Males and females both respond to signals produced by either sex but display different behaviors during duets. To devise practical methods to attract and trap males with vibrational signals in field environments, a microcontroller platform was tested for capability to control inexpensive vibration sensing and output devices. The microcontroller was programmed to send mimics of different D. citri signals to a piezo buzzer for substrateborne broadcast. A mimic that elicited strong female responses was tested in bioassays that jointly compared it with other previously bioassayed signals, and the response to the mimic was found to be statistically comparable to that elicited by a recorded male call. The successful result suggests there is opportunity to develop microcontroller systems further as a means of trapping psyllids. |
---|---|
ISSN: | 0015-4040 1938-5102 |
DOI: | 10.1653/024.096.0437 |