Oligonucleotides labeled with single fluorophores as sensors for deoxynucleotide triphosphate binding by DNA polymerases
Oligonucleotides labeled with a single fluorophore (fluorescein or tetramethylrhodamine) have been used previously as fluorogenic substrates for a number of DNA modifying enzymes. Here, it is shown that such molecules can be used as fluorogenic probes to detect the template-dependent binding of deox...
Gespeichert in:
Veröffentlicht in: | Analytical biochemistry 2014-01, Vol.444, p.60-66 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oligonucleotides labeled with a single fluorophore (fluorescein or tetramethylrhodamine) have been used previously as fluorogenic substrates for a number of DNA modifying enzymes. Here, it is shown that such molecules can be used as fluorogenic probes to detect the template-dependent binding of deoxynucleotide triphosphates by DNA polymerases. Two polymerases were used in this work: the Klenow fragment of the Escherichia coli DNA polymerase I and the Bacillus stearothermophilus polymerase, Bst. When complexes of these polymerases with dye-labeled hairpin-type oligonucleotides were mixed with various deoxynucleotide triphosphates in the presence of Sr2+ as the divalent metal cation, the formation of ternary DNA–polymerase–dNTP complexes was detected by concentration-dependent changes in the fluorescence intensities of the dyes. Fluorescein- and tetramethylrhodamine-labeled probes of identical sequences responded differently to the two polymerases. With Bst polymerase, the fluorescence intensities of all probes increased with the next correct dNTP; with Klenow polymerase, tetramethylrhodamine-labeled probes increased their fluorescence, but the intensity of fluorescein-labeled probes decreased on formation of ternary complexes with the correct incoming nucleotides. The use of Sr2+ as the divalent metal ion allowed the formation of catalytically inactive ternary complexes and obviated the need for using 2′,3′-dideoxy-terminated oligonucleotides as would have been needed in the case of Mg2+ as the metal ion. |
---|---|
ISSN: | 0003-2697 1096-0309 |
DOI: | 10.1016/j.ab.2013.09.024 |