SMILE inhibits BMP-2-induced expression of osteocalcin by suppressing the activity of the RUNX2 transcription factor in MC3T3E1 cells

Abstract Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. Several recent studies have suggested that SMILE is a novel co-repressor that is involved in nuclear receptor signaling; however, the role of SMILE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2014-04, Vol.61, p.10-18
Hauptverfasser: Jang, Hoon, Kim, Eun-Jung, Park, Jae-Kyung, Kim, Dong-Ern, Kim, Hyoung-Joo, Sun, Wu-Sheng, Hwang, Seongsoo, Oh, Keon-Bong, Koh, Jeong-Tae, Jang, Won-Gu, Lee, Jeong- Woong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. Several recent studies have suggested that SMILE is a novel co-repressor that is involved in nuclear receptor signaling; however, the role of SMILE in osteoblast differentiation has not yet been elucidated. This study demonstrates that SMILE inhibits osteoblast differentiation by regulating the activity of Runt-related transcription factor-2 (RUNX2). Tunicamycin, an inducer of endoplasmic reticulum stress, stimulated SMILE expression. Bone morphogenetic protein-2-induced expression of alkaline phosphatase and osteocalcin, both of which are osteogenic genes, was suppressed by SMILE. The molecular mechanism by which SMILE affects osteocalcin expression was also determined. An immunoprecipitation assay revealed a physical interaction between SMILE and RUNX2 that significantly impaired the RUNX2-dependent activation of the osteocalcin gene. A ChIP assay revealed that SMILE repressed the ability of RUNX2 to bind to the osteocalcin gene promoter. Taken together, these findings demonstrate that SMILE negatively regulates osteocalcin via a direct interaction with RUNX2.
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2013.12.028