Hypoxic Preconditioning Increases Survival of Cardiac Progenitor Cells via the Pim-1 Kinase-Mediated Anti-Apoptotic Effect
Background: Stem cells transplanted to the ischemic myocardium usually encounter massive cell death within a few days after transplantation, and hypoxic preconditioning (HPC) is currently used as a strategy to prepare stem cells for increased survival and engraftment in the heart. The purpose of thi...
Gespeichert in:
Veröffentlicht in: | Circulation Journal 2014, Vol.78(3), pp.724-731 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Stem cells transplanted to the ischemic myocardium usually encounter massive cell death within a few days after transplantation, and hypoxic preconditioning (HPC) is currently used as a strategy to prepare stem cells for increased survival and engraftment in the heart. The purpose of this study is to determine whether Pim-1 kinase mediates any beneficial effects of HPC for human cardiac progenitor cells (CPCs). Methods and Results: Human CPCs were isolated from an adult heart auricle and were purified by magnetic-activated cell sorting using c-kit magnetic beads; they were hypoxic preconditioned for 6h. Both Pim-1 and p-Akt were determined. CPCs were assigned to one of the following groups: (1) control (without HPC); (2) HPC; or (3) HPC+I (Pim-1 inhibitor). HPC can promote the survival of CPCs. HPC enhances the expression of Pim-1 kinase in a time-dependent manner, which causes a reduction of proapoptotic elements (cytochrome c and cleaved caspase-3) and the preservation/modulation of important components of the mitochondria (Bcl-2, Bcl-XL and p-Bad), and attenuates mitochondrial damages. All of these protective effects were blocked by a Pim-1 inhibitor. Conclusions: Pim-1 plays a pivotal role in the protective effect of HPC for CPCs, and the promotion of the expression of Pim-1 in CPCs can as serve part of molecular therapeutic interventional strategies in the treatment of cardiomyopathy damage by blunting CPC death. (Circ J 2014; 78: 724–731) |
---|---|
ISSN: | 1346-9843 1347-4820 |
DOI: | 10.1253/circj.CJ-13-0841 |