Decomposing Bias in Different Types of Simple Decisions
The ability to adjust bias, or preference for an option, allows for great behavioral flexibility. Decision bias is also important for understanding cognition as it can provide useful information about underlying cognitive processes. Previous work suggests that bias can be adjusted in 2 primary ways:...
Gespeichert in:
Veröffentlicht in: | Journal of experimental psychology. Learning, memory, and cognition memory, and cognition, 2014-03, Vol.40 (2), p.385-398 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to adjust bias, or preference for an option, allows for great behavioral flexibility. Decision bias is also important for understanding cognition as it can provide useful information about underlying cognitive processes. Previous work suggests that bias can be adjusted in 2 primary ways: by adjusting how the stimulus under consideration is processed, or by adjusting how the response is prepared. The present study explored the experimental, behavioral, and theoretical distinctions between these biases. Different bias manipulations were employed in parallel across perceptual and memory-based decisions to assess the generality of the 2 biases. This is the 1st study to directly test whether conceptually similar bias instructions can induce dissociable bias effects across different decision tasks. The results show that stimulus and response biases can be separately induced in both tasks, suggesting that the biases generalize across different types of decisions. When analyzing behavioral data, the 2 biases can be differentiated by focusing on the time course of bias effects and/or by fitting choice reaction time models to the data. These findings have strong theoretical implications about how observed bias relates to underlying cognitive processes and how it should be used when testing cognitive theories. Guidelines are presented to help researchers identify how to induce the biases experimentally, how to dissociate them in the behavioral data, and how to quantify them using drift diffusion models. Because decision bias is pervasive across many domains of cognitive science, these guidelines can be useful for future work exploring decision bias and choice preferences. |
---|---|
ISSN: | 0278-7393 1939-1285 |
DOI: | 10.1037/a0034851 |