Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae

Developing novel strategies to increase the content of bioactive unsaturated fatty acids (FA) in ruminant-derived products requires a deeper understanding of rumen biohydrogenation and bacteria involved in this process. Although high-throughput pyrosequencing may allow for a great coverage of bacter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2014-03, Vol.97 (3), p.1661-1669
Hauptverfasser: Castro-Carrera, T., Toral, P.G., Frutos, P., McEwan, N.R., Hervás, G., Abecia, L., Pinloche, E., Girdwood, S.E., Belenguer, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing novel strategies to increase the content of bioactive unsaturated fatty acids (FA) in ruminant-derived products requires a deeper understanding of rumen biohydrogenation and bacteria involved in this process. Although high-throughput pyrosequencing may allow for a great coverage of bacterial diversity, it has hardly been used to investigate the microbiology of ruminal FA metabolism. In this experiment, 454 pyrosequencing and a molecular fingerprinting technique (terminal restriction fragment length polymorphism; T-RFLP) were used concurrently to assess the effect of diet supplementation with marine algae (MA) on the rumen bacterial community of dairy sheep. Eleven lactating ewes were divided in 2 lots and offered a total mixed ration based on alfalfa hay and concentrate (40:60), supplemented with 0 (control) or 8 (MA) g of MA/kg of dry matter. After 54d on treatments, animals were slaughtered and samples of rumen content and fluid were collected separately for microbial analysis. Pyrosequencing yielded a greater coverage of bacterial diversity than T-RFLP and allowed the identification of low abundant populations. Conversely, both molecular approaches pointed to similar conclusions and showed that relevant changes due to MA addition were observed within the major ruminal phyla, namely Bacteroidetes, Firmicutes, and Proteobacteria. Decreases in the abundance of unclassified Bacteroidales, Porphyromonadaceae, and Ruminococcaceae and increases in as-yet uncultured species of the family Succinivibrionaceae, might be related to a potential role of these groups in different pathways of rumen FA metabolism. Diet supplementation with MA, however, had no effect on the relative abundance of Butyrivibrio and Pseudobutyrivibrio genera. In addition, results from both 454 pyrosequencing and T-RFLP indicate that the effect of MA was rather consistent in rumen content or fluid samples, despite inherent differences between these fractions in their bacterial composition.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2013-7243